×

Conformal field theory and the hot phase of three-dimensional U(1) gauge theory. (English) Zbl 1416.81140

Summary: We study the high-temperature phase of compact U(1) gauge theory in 2 + 1 dimensions, comparing the results of lattice calculations with analytical predictions from the conformal-field-theory description of the low-temperature phase of the bidimensional XY model. We focus on the two-point correlation functions of probe charges and the field-strength operator, finding excellent quantitative agreement with the functional form and the continuously varying critical indices predicted by conformal field theory.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T25 Quantum field theory on lattices
81T28 Thermal quantum field theory
62P35 Applications of statistics to physics

References:

[1] H.R. Fiebig and R.M. Woloshyn, Monopoles and chiral symmetry breaking in lattice QED in three-dimensions, Phys. Rev.D 42 (1990) 3520 [INSPIRE].
[2] Y. Hosotani, Compact QED in three-dimensions and the Josephson effect, Phys. Lett.B 69 (1977) 499 [INSPIRE].
[3] G. Baskaran and P.W. Anderson, Gauge theory of high temperature superconductors and strongly correlated Fermi systems, Phys. Rev.B 37 (1988) 580 [INSPIRE].
[4] E.H. Fradkin, Field theories of condensed matter physics, Front. Phys.82 (2013) 1 [INSPIRE]. · Zbl 1278.82001
[5] J. Fröhlich and U.M. Studer, Gauge invariance and current algebra in nonrelativistic many body theory, Rev. Mod. Phys.65 (1993) 733 [INSPIRE]. · doi:10.1103/RevModPhys.65.733
[6] M.C. Diamantini, P. Sodano and C.A. Trugenberger, Gauge theories of Josephson junction arrays, Nucl. Phys.B 474 (1996) 641 [hep-th/9511168] [INSPIRE]. · Zbl 1097.82033
[7] M. Franz, Z. Tešanović and O. Vafek, QED(3) theory of pairing pseudogap in cuprates. 1. From D wave superconductor to antiferromagnet via ‘algebraic’ Fermi liquid, Phys. Rev.B 66 (2002) 054535 [cond-mat/0203333] [INSPIRE].
[8] I.F. Herbut, QED(3) theory of underdoped high temperature superconductors, Phys. Rev.B 66 (2002) 094504 [cond-mat/0202491] [INSPIRE].
[9] T. Senthil, Deconfined quantum critical points, Science303 (2004) 1490 [INSPIRE]. · doi:10.1126/science.1091806
[10] P.A. Lee, N. Nagaosa and X.-G. Wen, Doping a Mott insulator: physics of high-temperature superconductivity, Rev. Mod. Phys.78 (2006) 17 [INSPIRE]. · doi:10.1103/RevModPhys.78.17
[11] V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, AC conductivity of graphene: from tight-binding model to 2 + 1-dimensional quantum electrodynamics, Int. J. Mod. Phys.B 21 (2007) 4611 [arXiv:0706.3016] [INSPIRE]. · Zbl 1141.81345
[12] A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett.B 59 (1975) 82 [INSPIRE].
[13] A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys.B 120 (1977) 429 [INSPIRE].
[14] J.M. Kosterlitz, The d-dimensional Coulomb gas and the roughening transition, J. Phys.C 10 (1977) 3753.
[15] K.G. Wilson, Confinement of quarks, Phys. Rev.D 10 (1974) 2445 [INSPIRE].
[16] H. Georgi and S.L. Glashow, Unified weak and electromagnetic interactions without neutral currents, Phys. Rev. Lett.28 (1972) 1494 [INSPIRE]. · doi:10.1103/PhysRevLett.28.1494
[17] M. Göpfert and G. Mack, Proof of confinement of static quarks in three-dimensional U(1) lattice gauge theory for all values of the coupling constant, Commun. Math. Phys.82 (1981) 545 [INSPIRE].
[18] J. Villain, Theory of one-dimensional and two-dimensional magnets with an easy magnetization plane. 2. The planar, classical, two-dimensional magnet, J. Phys. (France)36 (1975) 581.
[19] S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys.140 (1982) 372. · doi:10.1016/0003-4916(82)90164-6
[20] R. Jackiw and S. Templeton, How superrenormalizable interactions cure their infrared divergences, Phys. Rev.D 23 (1981) 2291 [INSPIRE].
[21] R.D. Pisarski, Chiral symmetry breaking in three-dimensional electrodynamics, Phys. Rev.D 29 (1984) 2423 [INSPIRE].
[22] T. Appelquist, M.J. Bowick, E. Cohler and L.C.R. Wijewardhana, Chiral symmetry breaking in (2 + 1)-dimensions, Phys. Rev. Lett.55 (1985) 1715 [INSPIRE].
[23] D. Nash, Higher order corrections in (2 + 1)-dimensional QED, Phys. Rev. Lett.62 (1989) 3024 [INSPIRE].
[24] G.-Z. Liu and G. Cheng, Effect of gauge boson mass on chiral symmetry breaking in QED(3), Phys. Rev.D 67 (2003) 065010 [hep-th/0211231] [INSPIRE].
[25] K. Kaveh and I.F. Herbut, Chiral symmetry breaking in QED(3) in presence of irrelevant interactions: a renormalization group study, Phys. Rev.B 71 (2005) 184519 [cond-mat/0411594] [INSPIRE].
[26] T. Appelquist, D. Nash and L.C.R. Wijewardhana, Critical behavior in (2 + 1)-dimensional QED, Phys. Rev. Lett.60 (1988) 2575 [INSPIRE].
[27] V. Azcoiti and X.-Q. Luo, Phase structure of compact lattice QED in three-dimensions with massless Fermions, Mod. Phys. Lett.A 8 (1993) 3635 [hep-lat/9212011] [INSPIRE].
[28] K.-I. Kubota and H. Terao, Dynamical symmetry breaking in QED(3) from the Wilson RG point of view, Prog. Theor. Phys.105 (2001) 809 [hep-ph/0101073] [INSPIRE]. · Zbl 0994.81139
[29] H. Kleinert, F.S. Nogueira and A. Sudbø, Deconfinement transition in three-dimensional compact U(1) gauge theories coupled to matter fields, Phys. Rev. Lett.88 (2002) 232001 [hep-th/0201168] [INSPIRE].
[30] I.F. Herbut and B.H. Seradjeh, Permanent confinement in the compact QED(3) with fermionic matter, Phys. Rev. Lett.91 (2003) 171601 [cond-mat/0305296] [INSPIRE].
[31] T. Appelquist and L.C.R. Wijewardhana, Phase structure of noncompact QED3 and the Abelian Higgs model, in the proceedings of the 3rdInternational Symposium on Quantum theory and symmetries (QTS3), September 10-14, Cincinnati U.S.A. (2004), hep-ph/0403250 [INSPIRE].
[32] C.S. Fischer, R. Alkofer, T. Dahm and P. Maris, Dynamical chiral symmetry breaking in unquenched QED(3), Phys. Rev.D 70 (2004) 073007 [hep-ph/0407104] [INSPIRE].
[33] F.S. Nogueira and H. Kleinert, Quantum electrodynamics in 2 + 1 dimensions, confinement and the stability of U(1) spin liquids, Phys. Rev. Lett.95 (2005) 176406 [cond-mat/0501022] [INSPIRE].
[34] F.S. Nogueira and H. Kleinert, Compact quantum electrodynamics in 2 + 1 dimensions and spinon deconfinement: A Renormalization group analysis, Phys. Rev.B 77 (2008) 045107 [arXiv:0705.3541] [INSPIRE].
[35] J. Braun, H. Gies, L. Janssen and D. Roscher, Phase structure of many-flavor QED3, Phys. Rev.D 90 (2014) 036002 [arXiv:1404.1362] [INSPIRE].
[36] Y. Huh and P. Strack, Stress tensor and current correlators of interacting conformal field theories in 2 + 1 dimensions: fermionic Dirac matter coupled to U (1) gauge field, JHEP01 (2015) 147 [Erratum ibid.03 (2016) 054] [arXiv:1410.1902] [INSPIRE].
[37] L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum electrodynamics in d = 3 from the ε expansion, Phys. Rev. Lett.116 (2016) 131601 [arXiv:1508.06278] [INSPIRE]. · Zbl 1351.81103
[38] L. Janssen, Spontaneous breaking of Lorentz symmetry in (2 + ϵ)-dimensional QED, Phys. Rev.D 94 (2016) 094013 [arXiv:1604.06354] [INSPIRE].
[39] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QEDd, F -theorem and the ϵ expansion, J. Phys.A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE]. · Zbl 1348.81454
[40] S. Giombi, G. Tarnopolsky and I.R. Klebanov, On CJand CTin conformal QED, JHEP08 (2016) 156 [arXiv:1602.01076] [INSPIRE]. · Zbl 1390.81511
[41] I.F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev.D 94 (2016) 025036 [arXiv:1605.09482] [INSPIRE].
[42] S.M. Chester and S.S. Pufu, Towards bootstrapping QED3, JHEP08 (2016) 019 [arXiv:1601.03476] [INSPIRE]. · Zbl 1390.81498
[43] S.M. Chester and S.S. Pufu, Anomalous dimensions of scalar operators in QED3, JHEP08 (2016) 069 [arXiv:1603.05582] [INSPIRE]. · Zbl 1390.81279
[44] A.V. Kotikov and S. Teber, Critical behavior of (2 + 1)-dimensional QED: 1/Nfcorrections in an arbitrary nonlocal gauge, Phys. Rev.D 94 (2016) 114011 [arXiv:1609.06912] [INSPIRE].
[45] V.P. Gusynin and P.K. Pyatkovskiy, Critical number of fermions in three-dimensional QED, Phys. Rev.D 94 (2016) 125009 [arXiv:1607.08582] [INSPIRE].
[46] A. Thomson and S. Sachdev, Spectrum of conformal gauge theories on a torus, Phys. Rev.B 95 (2017) 205128 [arXiv:1607.05279] [INSPIRE].
[47] A. Thomson and S. Sachdev, Quantum electrodynamics in 2 + 1 dimensions with quenched disorder: quantum critical states with interactions and disorder, Phys. Rev.B 95 (2017) 235146 [arXiv:1702.04723] [INSPIRE].
[48] L. Di Pietro and E. Stamou, Scaling dimensions in QED3from the ϵ-expansion, JHEP12 (2017) 054 [arXiv:1708.03740 [INSPIRE]. · Zbl 1383.81203
[49] L. Di Pietro and E. Stamou, Operator mixing in the ϵ-expansion: scheme and evanescent-operator independence, Phys. Rev.D 97 (2018) 065007 [arXiv:1708.03739] [INSPIRE].
[50] S. Benvenuti and H. Khachatryan, QED’s in 2+1 dimensions: complex fixed points and dualities, arXiv:1812.01544 [INSPIRE].
[51] Z. Li, Solving QED3with conformal bootstrap, arXiv:1812.09281 [INSPIRE].
[52] J. Steinberg and B. Swingle, Thermalization and chaos in QED3, Phys. Rev.D 99 (2019) 076007 [arXiv:1901.04984] [INSPIRE].
[53] S. Benvenuti and H. Khachatryan, Easy-plane QED3’s in the large Nflimit, arXiv:1902.05767 [INSPIRE].
[54] N. Parga, Finite temperature behavior of topological excitations in lattice compact QED, Phys. Lett.B 107 (1981) 442 [INSPIRE].
[55] U.M. Heller, The string tension in (2 + 1)-dimensional compact lattice QED for all couplings: a variational calculation, Phys. Rev.D 23 (1981) 2357 [INSPIRE].
[56] J.B. Marston, Instantons and massless fermions in (2 + 1)-dimensional lattice QED and antiferromagnets, Phys. Rev. Lett.64 (1990) 1166 [INSPIRE].
[57] I.J.R. Aitchison, N. Dorey, M. Klein-Kreisler and N.E. Mavromatos, Phase structure of QED in three-dimensions at finite temperature, Phys. Lett.B 294 (1992) 91 [hep-ph/9207246] [INSPIRE].
[58] D. Cangemi, E. D’Hoker and G.V. Dunne, Derivative expansion of the effective action and vacuum instability for QED in (2 + 1)-dimensions, Phys. Rev.D 51 (1995) R2513 [hep-th/9409113] [INSPIRE].
[59] I.I. Kogan and A. Kovner, Compact QED in three-dimensions: a simple example of a variational calculation in a gauge theory, Phys. Rev.D 51 (1995) 1948 [hep-th/9410067] [INSPIRE].
[60] W.E. Brown and I.I. Kogan, Compact QED in three-dimensions with theta term and axionic confining strings, Phys. Rev.D 56 (1997) 3718 [hep-th/9703128] [INSPIRE].
[61] A. Kovner and B. Svetitsky, Interaction potential in compact three-dimensional QED with mixed action, Phys. Rev.D 60 (1999) 105032 [hep-lat/9811015] [INSPIRE].
[62] D.V. Antonov, Various properties of compact QED and confining strings, Phys. Lett.B 428 (1998) 346 [hep-th/9802056] [INSPIRE].
[63] N.E. Mavromatos and J. Papavassiliou, Nonlinear dynamics in QED in three-dimensions and nontrivial infrared structure, Phys. Rev.D 60 (1999) 125008 [hep-th/9904046] [INSPIRE].
[64] V.K. Onemli, M. Tas and B. Tekin, Phase transition in compact QED(3) and the Josephson junction, JHEP08 (2001) 046 [hep-th/0105157] [INSPIRE]. · doi:10.1088/1126-6708/2001/08/046
[65] N.O. Agasian and D. Antonov, Finite temperature behavior of the 3D Polyakov model with massless quarks, Phys. Lett.B 530 (2002) 153 [hep-th/0109189] [INSPIRE]. · Zbl 0991.81600
[66] C.D. Fosco and L.E. Oxman, Massless fermions and the instanton dipole liquid in compact QED(3), Annals Phys.321 (2006) 1843 [hep-th/0509145] [INSPIRE]. · Zbl 1100.81508 · doi:10.1016/j.aop.2006.01.001
[67] M. Ünsal, Topological symmetry, spin liquids and CFT duals of Polyakov model with massless fermions, arXiv:0804.4664 [INSPIRE].
[68] J. Wang, J.-R. Wang, W. Li and G.-Z. Liu, Confinement induced by fermion damping in three-dimensional QED, Phys. Rev.D 82 (2010) 067701 [arXiv:1008.0736] [INSPIRE].
[69] S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D = 4 teaches us about scale and conformal invariance, Nucl. Phys.B 848 (2011) 578 [arXiv:1101.5385] [INSPIRE]. · Zbl 1215.78006
[70] A. Cherman and M. Ünsal, Critical behavior of gauge theories and Coulomb gases in three and four dimensions, arXiv:1711.10567 [INSPIRE].
[71] M.C. Diamantini, L. Gammaitoni, C.A. Trugenberger and V.M. Vinokur, Vogel-Fulcher-Tamman criticality of 3D superinsulators, Sci. Rep.8 (2018) 15718 [arXiv:1806.00823] [INSPIRE].
[72] N. Maggiore, Conserved chiral currents on the boundary of 3D Maxwell theory, J. Phys.A 52 (2019) 115401 [arXiv:1902.01901] [INSPIRE]. · Zbl 1507.81170
[73] E. Dagotto, J.B. Kogut and A. Kocić, A computer simulation of chiral symmetry breaking in (2 + 1)-dimensional QED with N flavors, Phys. Rev. Lett.62 (1989) 1083 [INSPIRE].
[74] E. Dagotto, A. Kocić and J.B. Kogut, Chiral symmetry breaking in three-dimensional QED with Nfflavors, Nucl. Phys.B 334 (1990) 279 [INSPIRE].
[75] S.J. Hands, J.B. Kogut and C.G. Strouthos, Noncompact QED(3) with Nfgreater than or equal to 2, Nucl. Phys.B 645 (2002) 321 [hep-lat/0208030] [INSPIRE]. · Zbl 0999.81545
[76] S.J. Hands, J.B. Kogut, L. Scorzato and C.G. Strouthos, Non-compact QED(3) with Nf = 1 and Nf = 4, Phys. Rev.B 70 (2004) 104501 [hep-lat/0404013] [INSPIRE].
[77] S. Hands and I.O. Thomas, Lattice study of anisotropic QED(3), Phys. Rev.B 72 (2005) 054526 [hep-lat/0412009] [INSPIRE].
[78] S. Hands, J.B. Kogut and B. Lucini, On the interplay of fermions and monopoles in compact QED(3), hep-lat/0601001 [INSPIRE].
[79] W. Armour et al., Magnetic monopole plasma phase in (2 + 1)d compact quantum electrodynamics with fermionic matter, Phys. Rev.D 84 (2011) 014502 [arXiv:1105.3120] [INSPIRE].
[80] O. Raviv, Y. Shamir and B. Svetitsky, Nonperturbative β-function in three-dimensional electrodynamics, Phys. Rev.D 90 (2014) 014512 [arXiv:1405.6916] [INSPIRE].
[81] N. Karthik and R. Narayanan, No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions, Phys. Rev.D 93 (2016) 045020 [arXiv:1512.02993] [INSPIRE].
[82] N. Karthik and R. Narayanan, Scale-invariance of parity-invariant three-dimensional QED, Phys. Rev.D 94 (2016) 065026 [arXiv:1606.04109] [INSPIRE].
[83] X.Y. Xu et al., Monte Carlo study of compact quantum electrodynamics with fermionic matter: the parent state of quantum phases, Phys. Rev.X 9 (2019) 021022 [arXiv:1807.07574] [INSPIRE].
[84] T.A. DeGrand and D. Toussaint, Topological excitations and Monte Carlo simulation of abelian gauge theory, Phys. Rev.D 22 (1980) 2478 [INSPIRE].
[85] T. Sterling and J. Greensite, Portraits of the flux tube in QED in three-dimensions: a Monte Carlo simulation with external sources, Nucl. Phys.B 220 (1983) 327 [INSPIRE].
[86] M. Karliner and G. Mack, Mass gap and string tension in QED comparison of theory with Monte Carlo simulation, Nucl. Phys.B 225 (1983) 371 [INSPIRE].
[87] P.D. Coddington, A.J.G. Hey, A.A. Middleton and J.S. Townsend, The deconfining transition for finite temperature U(1) lattice gauge theory in (2 + 1)-dimensions, Phys. Lett.B 175 (1986) 64 [INSPIRE].
[88] R.J. Wensley and J.D. Stack, Monopoles and confinement in three-dimensions, Phys. Rev. Lett.63 (1989) 1764 [INSPIRE]. · doi:10.1103/PhysRevLett.63.1764
[89] H.D. Trottier and R.M. Woloshyn, Exploring confinement by cooling: a study of compact QED in three-dimensions, Phys. Rev.D 48 (1993) 4450 [hep-lat/9305018] [INSPIRE].
[90] M. Baig and H. Fort, Fixed boundary conditions and phase transitions in pure gauge compact QED, Phys. Lett.B 332 (1994) 428 [hep-lat/9406003] [INSPIRE].
[91] M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, A lattice study of 3D compact QED at finite temperature, Phys. Rev.D 64 (2001) 054507 [hep-lat/0105021] [INSPIRE].
[92] M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, Monopoles, confinement and deconfinement of (2 + 1)-dimensional compact lattice QED in external fields, Phys. Rev.D 64 (2001) 114502 [hep-lat/0106021] [INSPIRE].
[93] M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, Photon propagator, monopoles and the thermal phase transition in 3D compact QED, Phys. Rev. Lett.88 (2002) 231601 [hep-lat/0112048] [INSPIRE]. · Zbl 1097.81595
[94] M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, Confinement and the photon propagator in 3D compact QED: a lattice study in Landau gauge at zero and finite temperature, Phys. Rev.D 67 (2003) 034502 [hep-lat/0208013] [INSPIRE]. · Zbl 1097.81595
[95] M. Loan, M. Brunner, C. Sloggett and C. Hamer, Path integral Monte Carlo approach to the U(1) lattice gauge theory in (2 + 1)-dimensions, Phys. Rev.D 68 (2003) 034504 [hep-lat/0209159] [INSPIRE].
[96] M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, The photon propagator in compact QED(2+1): the effect of wrapping Dirac strings, Phys. Rev.D 69 (2004) 094502 [hep-lat/0311033] [INSPIRE].
[97] G. Arakawa, I. Ichinose, T. Matsui and K. Sakakibara, Deconfinement phase transition in 3D nonlocal U (1) lattice gauge theory, Phys. Rev. Lett.94 (2005) 211601 [hep-th/0502013] [INSPIRE]. · Zbl 1192.81245
[98] R. Fiore et al., QED(3) on a space-time lattice: a comparison between compact and noncompact formulation, PoS(LAT2005)243 [hep-lat/0509183] [INSPIRE].
[99] R. Fiore et al., QED(3) on a space-time lattice: compact versus noncompact formulation, Phys. Rev.D 72 (2005) 094508 [Erratum ibid.D 72 (2005) 119902] [hep-lat/0506020] [INSPIRE].
[100] R. Fiore, P. Giudice and A. Papa, Non-compact QED(3) at finite temperature: the confinement-deconfinement transition, JHEP11 (2008) 055 [arXiv:0808.1631] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/055
[101] O. Borisenko, M. Gravina and A. Papa, Critical behavior of the compact 3d U (1) theory in the limit of zero spatial coupling, J. Stat. Mech.0808 (2008) P08009 [arXiv:0806.2081] [INSPIRE].
[102] O. Borisenko, R. Fiore, M. Gravina and A. Papa, Critical behavior of the compact 3d U (1) gauge theory on isotropic lattices, J. Stat. Mech.1004 (2010) P04015 [arXiv:1001.4979] [INSPIRE].
[103] O. Borisenko and V. Chelnokov, Twist free energy and critical behavior of 3D U (1) LGT at finite temperature, Phys. Lett.B 730 (2014) 226 [arXiv:1311.2179] [INSPIRE]. · Zbl 1381.81090
[104] O. Borisenko, V. Chelnokov, M. Gravina and A. Papa, Deconfinement and universality in the 3D U (1) lattice gauge theory at finite temperature: study in the dual formulation, JHEP09 (2015) 062 [arXiv:1507.00833] [INSPIRE]. · Zbl 1388.81031
[105] M. Caselle, M. Panero, R. Pellegrini and D. Vadacchino, A different kind of string, JHEP01 (2015) 105 [arXiv:1406.5127] [INSPIRE]. · Zbl 1388.81503 · doi:10.1007/JHEP01(2015)105
[106] M. Caselle, M. Panero and D. Vadacchino, Width of the flux tube in compact U (1) gauge theory in three dimensions, JHEP02 (2016) 180 [arXiv:1601.07455] [INSPIRE].
[107] M.N. Chernodub, V.A. Goy and A.V. Molochkov, Nonperturbative Casimir effect and monopoles: compact Abelian gauge theory in two spatial dimensions, Phys. Rev.D 95 (2017) 074511 [arXiv:1703.03439] [INSPIRE].
[108] M.N. Chernodub, V.A. Goy and A.V. Molochkov, Casimir effect and deconfinement phase transition, Phys. Rev.D 96 (2017) 094507 [arXiv:1709.02262] [INSPIRE].
[109] A. Athenodorou and M. Teper, On the spectrum and string tension of U (1) lattice gauge theory in 2 + 1 dimensions, JHEP01 (2019) 063 [arXiv:1811.06280] [INSPIRE]. · Zbl 1409.83174
[110] B. Svetitsky, Symmetry aspects of finite temperature confinement transitions, Phys. Rept.132 (1986) 1 [INSPIRE].
[111] J. Kuti, J. Polónyi and K. Szlachányi, Monte Carlo study of SU(2) gauge theory at finite temperature, Phys. Lett.B 98 (1981) 199 [INSPIRE].
[112] L.D. McLerran and B. Svetitsky, A Monte Carlo study of SU(2) Yang-Mills theory at finite temperature, Phys. Lett.B 98 (1981) 195 [INSPIRE].
[113] L.D. McLerran and B. Svetitsky, Quark liberation at high temperature: a Monte Carlo study of SU(2) gauge theory, Phys. Rev.D 24 (1981) 450 [INSPIRE].
[114] V.S. Dotsenko and S.N. Vergeles, Renormalizability of phase factors in the nonabelian gauge theory, Nucl. Phys.B 169 (1980) 527 [INSPIRE].
[115] A. Mykkänen, M. Panero and K. Rummukainen, Casimir scaling and renormalization of Polyakov loops in large-N gauge theories, JHEP05 (2012) 069 [arXiv:1202.2762] [INSPIRE].
[116] B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions, Nucl. Phys.B 210 (1982) 423 [INSPIRE].
[117] J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys.C 6 (1973) 1181 [INSPIRE].
[118] V.L. Berezinskiĭ, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP32 (1971) 493 [INSPIRE].
[119] J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys.C 7 (1974) 1046 [INSPIRE].
[120] J.V. José, L.P. Kadanoff, S. Kirkpatrick and D.R. Nelson, Renormalization, vortices and symmetry breaking perturbations on the two-dimensional planar model, Phys. Rev.B 16 (1977) 1217 [INSPIRE].
[121] D.J. Amit, Y.Y. Goldschmidt and G. Grinstein, Renormalization group analysis of the phase transition in the 2D Coulomb gas, sine-Gordon theory and xy model, J. Phys.A 13 (1980) 585 [INSPIRE].
[122] N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett.17 (1966) 1133 [INSPIRE].
[123] O.A. McBryan and T. Spencer, On the decay of correlations in SO(N) symmetric ferromagnets, Commun. Math. Phys.53 (1977) 299 [INSPIRE].
[124] J. Fröhlich and T. Spencer, The Kosterlitz-thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Commun. Math. Phys.81 (1981) 527 [INSPIRE]. · doi:10.1007/BF01208273
[125] W. Janke and K. Nather, Monte Carlo simulation of dimensional crossover in the XY model, Phys. Rev.B 48 (1993) 15807 [INSPIRE].
[126] N. Schultka and E. Manousakis, Crossover from two-dimensional to three-dimensional behavior in superfluids, Phys. Rev.B 51 (1995) 1712 [cond-mat/9406014] [INSPIRE].
[127] N. Schultka and E. Manousakis, Scaling of the superfluid density in superfluid films, J. Low Temp. Phys.105 (1996) 3 [cond-mat/9602085].
[128] N. Schultka and E. Manousakis, Boundary effects in superfluid films, J. Low Temp. Phys.109 (1997) 733 [cond-mat/9702216].
[129] K. Nho and E. Manousakis, Heat-capacity scaling function for confined superfluids, Phys. Rev.B 68 (2003) 174503 [cond-mat/0305500].
[130] C. Zhang, K. Nho and D.P. Landau, Finite-size effects on the thermal resistivity of4He in the quasi-two-dimensional geometry, Phys. Rev.B 73 (2006) 174508.
[131] A. Hucht, Thermodynamic Casimir effect in4He films near Tλ: Monte Carlo results, Phys. Rev. Lett.99 (2007) 185301 [arXiv:0706.3458].
[132] O. Vasilyev, A. Gambassi, A. Maciolek and S. Dietrich, Monte Carlo simulation results for critical Casimir forces, Europhys. Lett.80 (2007) 60009 [arXiv:0708.2902]. · doi:10.1209/0295-5075/80/60009
[133] M. Hasenbusch, The Kosterlitz-Thouless transition in thin films: a Monte Carlo study of three-dimensional lattice models, J. Stat. Mech.2 (2009) 02005 [arXiv:0811.2178]. · Zbl 1459.82360
[134] Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev.D 10 (1974) 4262 [INSPIRE].
[135] S. Mandelstam, Vortices and quark confinement in nonabelian gauge theories, Phys. Rept.23 (1976) 245 [INSPIRE]. · doi:10.1016/0370-1573(76)90043-0
[136] G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys.B 153 (1979) 141 [INSPIRE].
[137] L. Gross, Convergence of U (1)3lattice gauge theory to its continuum limit, Commun. Math. Phys.92 (1983) 137 [INSPIRE]. · Zbl 0571.60011
[138] T. Banks, R. Myerson and J.B. Kogut, Phase transitions in abelian lattice gauge theories, Nucl. Phys.B 129 (1977) 493 [INSPIRE].
[139] R. Savit, Topological excitations in U(1) invariant theories, Phys. Rev. Lett.39 (1977) 55 [INSPIRE].
[140] J. Glimm and A.M. Jaffe, Instantons in a U(1) lattice gauge theory: a Coulomb dipole gas, Commun. Math. Phys.56 (1977) 195 [INSPIRE].
[141] B.E. Baaquie, (2 + 1)-dimensional Abelian lattice gauge theory, Phys. Rev.D 16 (1977) 3040 [INSPIRE].
[142] M. Zach, M. Faber and P. Skala, Investigating confinement in dually transformed U(1) lattice gauge theory, Phys. Rev.D 57 (1998) 123 [hep-lat/9705019] [INSPIRE].
[143] M. Panero, A numerical study of confinement in compact QED, JHEP05 (2005) 066 [hep-lat/0503024] [INSPIRE].
[144] M. Panero, A numerical study of a confinedQQ¯\[ Q\overline{Q}\] system in compact U(1) lattice gauge theory in 4D, Nucl. Phys. Proc. Suppl.140 (2005) 665 [hep-lat/0408002] [INSPIRE].
[145] G. Parisi, R. Petronzio and F. Rapuano, A measurement of the string tension near the continuum limit, Phys. Lett.B 128 (1983) 418 [INSPIRE].
[146] P. de Forcrand, M. D’Elia and M. Pepe, A study of the ’t Hooft loop in SU(2) Yang-Mills theory, Phys. Rev. Lett.86 (2001) 1438 [hep-lat/0007034] [INSPIRE].
[147] M. Caselle, F. Gliozzi, U. Magnea and S. Vinti, Width of long color flux tubes in lattice gauge systems, Nucl. Phys.B 460 (1996) 397 [hep-lat/9510019] [INSPIRE].
[148] S.L. Sondhi, S.M. Girvin, J.P. Carini and D. Shahar, Continuous quantum phase transitions, Rev. Mod. Phys.69 (1997) 315 [INSPIRE]. · doi:10.1103/RevModPhys.69.315
[149] M.R. Beasley, J.E. Mooij and T.P. Orlando, Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors, Phys. Rev. Lett.42 (1979) 1165.
[150] D.J. Resnick et al., Kosterlitz-thouless transition in proximity-coupled superconducting arrays, Phys. Rev. Lett.47 (1981) 1542. · doi:10.1103/PhysRevLett.47.1542
[151] D.R. Nelson and J.M. Kosterlitz, Universal jump in the superfluid density of two-dimensional superfluids, Phys. Rev. Lett.39 (1977) 1201 [INSPIRE]. · doi:10.1103/PhysRevLett.39.1201
[152] P. Minnhagen, The two-dimensional Coulomb gas, vortex unbinding and superfluid-superconducting films, Rev. Mod. Phys.59 (1987) 1001 [INSPIRE]. · doi:10.1103/RevModPhys.59.1001
[153] B. Sachs et al., Ferromagnetic two-dimensional crystals: single layers of K2CuF4, Phys. Rev.B 88 (2013) 201402 [arXiv:1311.2410].
[154] D.B. Abraham, Surface structures and phase transitions — Exact results, in Phase transitions and critical phenomena, C. Domb and J.L. Lebowitz eds., Academic Press, London U.K. (1986).
[155] P.C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev.158 (1967) 383 [INSPIRE]. · doi:10.1103/PhysRev.158.383
[156] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.31 (1973) 259 [INSPIRE]. · Zbl 1125.81321 · doi:10.1007/BF01646487
[157] M. Hasenbusch, M. Marcu and K. Pinn, High precision renormalization group study of the roughening transition, PhysicaA 208 (1994) 124 [hep-lat/9404016] [INSPIRE].
[158] M. Hasenbusch and K. Pinn, Computing the roughening transition of Ising and solid-on-solid models by BCSOS model matching, J. Phys.A 30 (1997) 63 [cond-mat/9605019] [INSPIRE]. · Zbl 0919.60079
[159] M. Hasenbusch, The two dimensional XY model at the transition temperature: a high precision Monte Carlo study, J. Phys.A 38 (2005) 5869 [cond-mat/0502556] [INSPIRE]. · Zbl 1100.82003
[160] A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE]. · Zbl 0997.82019
[161] L.P. Kadanoff and A.C. Brown, Correlation functions on the critical lines of the Baxter and Ashkin-Teller models, Annals Phys.121 (1979) 318 [INSPIRE]. · doi:10.1016/0003-4916(79)90100-3
[162] L.P. Kadanoff, Multicritical behavior at the Kosterlitz-Thouless critical point, Ann. Phys.120 (1979) 39. · doi:10.1016/0003-4916(79)90280-X
[163] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, C = 1 conformal field theories on Riemann surfaces, Commun. Math. Phys.115 (1988) 649 [INSPIRE]. · Zbl 0649.32019
[164] K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [INSPIRE]. · doi:10.1103/PhysRev.179.1499
[165] P.H. Ginsparg, Applied conformal field theory, in the proceedings of the Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, June 28-August 5, Les Houches, France (1988), hep-th/9108028 [INSPIRE].
[166] M.C. Diamantini, C.A. Trugenberger and V.M. Vinokur, Confinement and asymptotic freedom with Cooper pairs, APS Physics1 (2018) 77 [arXiv:1807.01984] [INSPIRE].
[167] M. D’Elia, Lattice QCD simulations in external background fields, Lect. Notes Phys.871 (2013) 181 [arXiv:1209.0374]. · doi:10.1007/978-3-642-37305-3_7
[168] G. Endrődi, QCD in magnetic fields: from Hofstadter’s butterfly to the phase diagram, PoS(LATTICE 2014)018 [arXiv:1410.8028] [INSPIRE]. · Zbl 1342.81673
[169] A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett.51 (1983) 2077 [INSPIRE]. · doi:10.1103/PhysRevLett.51.2077
[170] A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev.D 29 (1984) 2366 [INSPIRE].
[171] L. Alvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and odd dimensions, Annals Phys.163 (1985) 288 [INSPIRE]. · Zbl 0584.58049 · doi:10.1016/0003-4916(85)90383-5
[172] E. Witten, The “<Emphasis Type=”Italic“>parity” anomaly on an unorientable manifold, Phys. Rev.B 94 (2016) 195150 [arXiv:1605.02391] [INSPIRE].
[173] N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE]. · Zbl 1377.81262
[174] P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP09 (2016) 095 [arXiv:1607.07457] [INSPIRE]. · Zbl 1390.81214 · doi:10.1007/JHEP09(2016)095
[175] J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP05 (2017) 159 [arXiv:1606.01912] [INSPIRE]. · Zbl 1380.81373 · doi:10.1007/JHEP05(2017)159
[176] A. Karch and D. Tong, Particle-vortex duality from 3D bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].
[177] A. Karch, B. Robinson and D. Tong, More abelian dualities in 2 + 1 dimensions, JHEP01 (2017) 017 [arXiv:1609.04012] [INSPIRE]. · Zbl 1373.81331
[178] S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and mirror symmetry, Phys. Rev.D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].
[179] S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett.118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].
[180] O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and U Sp gauge groups, JHEP02 (2017) 072 [arXiv:1611.07874] [INSPIRE]. · Zbl 1377.58018 · doi:10.1007/JHEP02(2017)072
[181] F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP04 (2017) 135 [arXiv:1702.07035] [INSPIRE]. · Zbl 1378.81127
[182] C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev.X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].
[183] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls and dualities in 2 + 1 dimensions, JHEP01 (2018) 110 [arXiv:1708.06806] [INSPIRE]. · Zbl 1384.83056
[184] L. Di Pietro, D. Gaiotto, E. Lauria and J. Wu, 3d abelian gauge theories at the boundary, arXiv:1902.09567 [INSPIRE].
[185] M.E. Peskin, Mandelstam ’t Hooft duality in abelian lattice models, Annals Phys.113 (1978) 122 [INSPIRE].
[186] C. Dasgupta and B.I. Halperin, Phase transition in a lattice model of superconductivity, Phys. Rev. Lett.47 (1981) 1556 [INSPIRE]. · doi:10.1103/PhysRevLett.47.1556
[187] T. Senthil, D.T. Son, C. Wang and C. Xu, Duality between (2 + 1)d quantum critical points, arXiv:1810.05174 [INSPIRE].
[188] A. Karch, D. Tong and C. Turner, A web of 2d dualities:Z2gauge fields and Arf invariants, arXiv:1902.05550 [INSPIRE].
[189] D.T. Son, Is the composite fermion a Dirac particle?, Phys. Rev.X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].
[190] D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2 + 1) dimensions, Phys. Rev. Lett.117 (2016) 016802 [arXiv:1510.08455] [INSPIRE].
[191] C. Wang and T. Senthil, Dual Dirac liquid on the surface of the electron topological insulator, Phys. Rev.X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].
[192] M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev.B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].
[193] G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys.B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].
[194] S. Borsányi et al., Precision SU(3) lattice thermodynamics for a large temperature range, JHEP07 (2012) 056 [arXiv:1204.6184] [INSPIRE].
[195] M. Caselle, A. Nada and M. Panero, QCD thermodynamics from lattice calculations with nonequilibrium methods: the SU(3) equation of state, Phys. Rev.D 98 (2018) 054513 [arXiv:1801.03110] [INSPIRE].
[196] M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett.103 (2009) 232001 [arXiv:0907.3719] [INSPIRE]. · doi:10.1103/PhysRevLett.103.232001
[197] M. Bruno, M. Caselle, M. Panero and R. Pellegrini, Exceptional thermodynamics: the equation of state of G2gauge theory, JHEP03 (2015) 057 [arXiv:1409.8305] [INSPIRE]. · Zbl 1388.81295
[198] M. Caselle, A. Nada and M. Panero, Hagedorn spectrum and thermodynamics of SU(2) and SU(3) Yang-Mills theories, JHEP07 (2015) 143 [Erratum ibid.11 (2017) 016] [arXiv:1505.01106] [INSPIRE]. · Zbl 1383.81133
[199] L. Giusti and M. Pepe, Equation of state of the SU(3) Yang-Mills theory: a precise determination from a moving frame, Phys. Lett.B 769 (2017) 385 [arXiv:1612.00265] [INSPIRE].
[200] M. Kitazawa et al., Equation of state for SU(3) gauge theory via the energy-momentum tensor under gradient flow, Phys. Rev.D 94 (2016) 114512 [arXiv:1610.07810] [INSPIRE].
[201] P. Giudice and S. Piemonte, Improved thermodynamics of SU(2) gauge theory, Eur. Phys. J.C 77 (2017) 821 [arXiv:1708.01216] [INSPIRE].
[202] T. Iritani, M. Kitazawa, H. Suzuki and H. Takaura, Thermodynamics in quenched QCD: energy-momentum tensor with two-loop order coefficients in the gradient-flow formalism, PTEP2019 (2019) 023B02 [arXiv:1812.06444] [INSPIRE].
[203] J. Christensen et al., Thermodynamics of SU(3) lattice gauge theory in (2 + 1)-dimensions, Nucl. Phys.B 374 (1992) 225 [INSPIRE]. · Zbl 0979.81593
[204] P. Bialas, L. Daniel, A. Morel and B. Petersson, Thermodynamics of SU(3) gauge theory in 2+1 dimensions, Nucl. Phys.B 807 (2009) 547 [arXiv:0807.0855] [INSPIRE]. · Zbl 1192.81227
[205] M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions I. The confining phase, JHEP06 (2011) 142 [arXiv:1105.0359] [INSPIRE]. · Zbl 1301.81113
[206] M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions II. The deconfined phase, JHEP05 (2012) 135 [arXiv:1111.0580] [INSPIRE]. · Zbl 1348.81344
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.