×

Scaling dimensions in \(\mathrm{QED}_{3}\) from the \(\epsilon\)-expansion. (English) Zbl 1383.81203

Summary: We study the fixed point that controls the IR dynamics of QED in \(d =4 - 2\epsilon\) dimensions. We derive the scaling dimensions of four-fermion and bilinear operators beyond leading order in the \(\epsilon\)-expansion. For the four-fermion operators, this requires the computation of a two-loop mixing that was not known before. We then extrapolate these scaling dimensions to \(d=3\) to estimate their value at the IR fixed point of \(\mathrm{QED}_{3}\) as function of the number of fermions \(N_f\). The next-to-leading order result for the four-fermion operators corrects significantly the leading one. Our best estimate at this order indicates that they do not cross marginality for any value of \(N_f\), which would imply that they cannot trigger a departure from the conformal phase. For the scaling dimensions of bilinear operators, we observe better convergence as we increase the order. In particular, the -expansion provides a convincing estimate for the dimension of the flavor-singlet scalar in the full range of \(N_f\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81V10 Electromagnetic interaction; quantum electrodynamics

Software:

FORM

References:

[1] J.A. Gracey, <Emphasis Type=”Italic“>Electron mass anomalous dimension at <InlineEquation ID=”IEq2“> <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> O1/Nf \[2 O\left(1/\left({N}_f^2\right)\right.\] in quantum electrodynamics, Phys. Lett.B 317 (1993) 415 [hep-th/9309092] [INSPIRE]. · doi:10.1016/0370-2693(93)91017-H
[2] J.A. Gracey, <Emphasis Type=”Italic“>Computation of critical exponent η at <InlineEquation ID=”IEq4“> <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> O1/Nf \[2 O\left(1/\left({N}_f^2\right)\right.\] in quantum electrodynamics in arbitrary dimensions, Nucl. Phys.B 414 (1994) 614 [hep-th/9312055] [INSPIRE]. · doi:10.1016/0550-3213(94)90257-7
[3] W. Rantner and X.-G. Wen, Spin correlations in the algebraic spin liquid: Implications for high-Tcsuperconductors, Phys. Rev.B 66 (2002) 144501 [INSPIRE]. · doi:10.1103/PhysRevB.66.144501
[4] M. Hermele, T. Senthil and M.P.A. Fisher, Algebraic spin liquid as the mother of many competing orders, Phys. Rev.B 72 (2005) 104404 [cond-mat/0502215] [INSPIRE].
[5] M. Hermele, T. Senthil and M.P.A. Fisher, Erratum: Algebraic spin liquid as the mother of many competing orders, Phys. Rev.B 76 (2007) 149906 [arXiv:0709.3032]. · doi:10.1103/PhysRevB.76.149906
[6] R.K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev.B 77 (2008) 155105 [arXiv:0801.0723] [INSPIRE]. · doi:10.1103/PhysRevB.77.155105
[7] C. Xu, Renormalization group studies on four-fermion interaction instabilities on algebraic spin liquids, Phys. Rev.B 78 (2008) 054432. · doi:10.1103/PhysRevB.78.054432
[8] V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP11 (2002) 049 [hep-th/0206054] [INSPIRE]. · doi:10.1088/1126-6708/2002/11/049
[9] S.S. Pufu, Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics, Phys. Rev.D 89 (2014) 065016 [arXiv:1303.6125] [INSPIRE].
[10] E. Dyer, M. Mezei and S.S. Pufu, Monopole Taxonomy in Three-Dimensional Conformal Field Theories, arXiv:1309.1160 [INSPIRE].
[11] S.M. Chester and S.S. Pufu, Anomalous dimensions of scalar operators in QED3, JHEP08 (2016) 069 [arXiv:1603.05582] [INSPIRE]. · Zbl 1390.81279 · doi:10.1007/JHEP08(2016)069
[12] Y. Huh and P. Strack, Stress tensor and current correlators of interacting conformal field theories in 2 + 1 dimensions: Fermionic Dirac matter coupled to U(1) gauge field, JHEP01 (2015) 147 [Erratum ibid.03 (2016) 054] [arXiv:1410.1902] [INSPIRE].
[13] Y. Huh, P. Strack and S. Sachdev, Conserved current correlators of conformal field theories in 2 + 1 dimensions, Phys. Rev.B 88 (2013) 155109 [arXiv:1307.6863] [INSPIRE]. · doi:10.1103/PhysRevB.88.155109
[14] S. Giombi, G. Tarnopolsky and I.R. Klebanov, On CJand CTin Conformal QED, JHEP08 (2016) 156 [arXiv:1602.01076] [INSPIRE]. · Zbl 1390.81511 · doi:10.1007/JHEP08(2016)156
[15] I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Entanglement Entropy of 3-D Conformal Gauge Theories with Many Flavors, JHEP05 (2012) 036 [arXiv:1112.5342] [INSPIRE]. · Zbl 1348.81321 · doi:10.1007/JHEP05(2012)036
[16] S.M. Chester and S.S. Pufu, Towards bootstrapping QED3, JHEP08 (2016) 019 [arXiv:1601.03476] [INSPIRE]. · Zbl 1390.81498 · doi:10.1007/JHEP08(2016)019
[17] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett.28 (1972) 240 [INSPIRE].
[18] L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum Electrodynamics in D = 3 from the ϵ Expansion, Phys. Rev. Lett.116 (2016) 131601 [arXiv:1508.06278] [INSPIRE]. · doi:10.1103/PhysRevLett.116.131601
[19] S.M. Chester, M. Mezei, S.S. Pufu and I. Yaakov, Monopole operators from the 4 − ϵ expansion, JHEP12 (2016) 015 [arXiv:1511.07108] [INSPIRE]. · doi:10.1007/JHEP12(2016)015
[20] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QEDd, F -Theorem and the ϵ Expansion, J. Phys.A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE]. · Zbl 1348.81454
[21] R.D. Pisarski, Chiral Symmetry Breaking in Three-Dimensional Electrodynamics, Phys. Rev.D 29 (1984) 2423 [INSPIRE].
[22] C. Vafa and E. Witten, Eigenvalue Inequalities for Fermions in Gauge Theories, Commun. Math. Phys.95 (1984) 257 [INSPIRE]. · doi:10.1007/BF01212397
[23] T. Appelquist, D. Nash and L.C.R. Wijewardhana, Critical Behavior in (2 + 1)-Dimensional QED, Phys. Rev. Lett.60 (1988) 2575 [INSPIRE]. · doi:10.1103/PhysRevLett.60.2575
[24] T. Appelquist and L.C.R. Wijewardhana, Phase structure of noncompact QED3 and the Abelian Higgs model, hep-ph/0403250 [INSPIRE].
[25] A.V. Kotikov, V.I. Shilin and S. Teber, Critical behavior of (2 + 1)-dimensional QED: 1/Nfcorrections in the Landau gauge, Phys. Rev.D 94 (2016) 056009 [arXiv:1605.01911] [INSPIRE].
[26] A.V. Kotikov and S. Teber, Critical behavior of (2 + 1)-dimensional QED: 1/Nfcorrections in an arbitrary nonlocal gauge, Phys. Rev.D 94 (2016) 114011 [arXiv:1609.06912] [INSPIRE].
[27] K. Kaveh and I.F. Herbut, Chiral symmetry breaking in QED3in presence of irrelevant interactions: A Renormalization group study, Phys. Rev.B 71 (2005) 184519 [cond-mat/0411594] [INSPIRE].
[28] J. Braun, H. Gies, L. Janssen and D. Roscher, Phase structure of many-flavor QED3, Phys. Rev.D 90 (2014) 036002 [arXiv:1404.1362] [INSPIRE].
[29] D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev.D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE]. · Zbl 1184.81127
[30] S. Gukov, RG Flows and Bifurcations, Nucl. Phys.B 919 (2017) 583 [arXiv:1608.06638] [INSPIRE]. · Zbl 1361.81102 · doi:10.1016/j.nuclphysb.2017.03.025
[31] L. Janssen and Y.-C. He, Critical behavior of the QED3-Gross-Neveu model: Duality and deconfined criticality, Phys. Rev.B 96 (2017) 205113 [arXiv:1708.02256] [INSPIRE]. · doi:10.1103/PhysRevB.96.205113
[32] L. Di Pietro and E. Stamou, Operator mixing in ϵ-expansion: scheme and evanescent (in)dependence, arXiv:1708.03739 [INSPIRE].
[33] A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2 + 1 Dimensions, JHEP01 (2017) 017 [arXiv:1609.04012] [INSPIRE]. · Zbl 1373.81331 · doi:10.1007/JHEP01(2017)017
[34] P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP09 (2016) 095 [arXiv:1607.07457] [INSPIRE]. · Zbl 1390.81214 · doi:10.1007/JHEP09(2016)095
[35] F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP04 (2017) 135 [arXiv:1702.07035] [INSPIRE]. · Zbl 1378.81127 · doi:10.1007/JHEP04(2017)135
[36] O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP02 (2016) 093 [arXiv:1512.00161] [INSPIRE]. · Zbl 1388.81744 · doi:10.1007/JHEP02(2016)093
[37] A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev.X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE]. · doi:10.1103/PhysRevX.6.031043
[38] J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP05 (2017) 159 [arXiv:1606.01912] [INSPIRE]. · Zbl 1380.81373 · doi:10.1007/JHEP05(2017)159
[39] N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys.374 (2016) 395 [arXiv:1606.01989] [INSPIRE]. · Zbl 1377.81262 · doi:10.1016/j.aop.2016.08.007
[40] C. Xu and Y.-Z. You, Self-dual Quantum Electrodynamics as Boundary State of the three dimensional Bosonic Topological Insulator, Phys. Rev.B 92 (2015) 220416 [arXiv:1510.06032] [INSPIRE]. · doi:10.1103/PhysRevB.92.220416
[41] N. Karthik and R. Narayanan, No evidence for bilinear condensate in parity-invariant three-dimensional QED with massless fermions, Phys. Rev.D 93 (2016) 045020 [arXiv:1512.02993] [INSPIRE].
[42] S.J. Hands, J.B. Kogut, L. Scorzato and C.G. Strouthos, The chiral limit of noncompact QED in three-dimensions, Nucl. Phys. Proc. Suppl.119 (2003) 974 [hep-lat/0209133] [INSPIRE]. · Zbl 1097.81616
[43] S.J. Hands, J.B. Kogut, L. Scorzato and C.G. Strouthos, Non-compact QED3with Nf = 1 and Nf = 4, Phys. Rev.B 70 (2004) 104501 [hep-lat/0404013] [INSPIRE].
[44] C. Strouthos and J.B. Kogut, Chiral Symmetry breaking in Three Dimensional QED, J. Phys. Conf. Ser.150 (2009) 052247 [arXiv:0808.2714] [INSPIRE]. · doi:10.1088/1742-6596/150/5/052247
[45] J.A. Gracey, Three loop MS-bar tensor current anomalous dimension in QCD, Phys. Lett.B 488 (2000) 175 [hep-ph/0007171] [INSPIRE].
[46] A.D. Kennedy, Clifford Algebras in Two ω Dimensions, J. Math. Phys.22 (1981) 1330 [INSPIRE]. · doi:10.1063/1.525069
[47] J.C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, vol. 26, Cambridge University Press, Cambridge (1986).
[48] S.G. Gorishnii, A.L. Kataev and S.A. Larin, Analytical Four Loop Result for β-function in QED in Ms and Mom Schemes, Phys. Lett.B 194 (1987) 429 [INSPIRE]. · doi:10.1016/0370-2693(87)91077-X
[49] S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, The Analytical four loop corrections to the QED β-function in the MS scheme and to the QED psi function: Total reevaluation, Phys. Lett.B 256 (1991) 81 [INSPIRE]. · doi:10.1016/0370-2693(91)90222-C
[50] M.J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett.B 256 (1991) 239 [INSPIRE]. · doi:10.1016/0370-2693(91)90680-O
[51] A. Bondi, G. Curci, G. Paffuti and P. Rossi, Ultraviolet Properties of the Generalized Thirring Model With U(N ) Symmetry, Phys. Lett.B 216 (1989) 345 [INSPIRE]. · doi:10.1016/0370-2693(89)91128-3
[52] M. Beneke and V.A. Smirnov, Ultraviolet renormalons in Abelian gauge theories, Nucl. Phys.B 472 (1996) 529 [hep-ph/9510437] [INSPIRE].
[53] S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys.B 455 (1995) 39 [hep-ph/9412375] [INSPIRE].
[54] L.D. Faddeev and V.N. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett.B 25 (1967) 29 [INSPIRE]. · doi:10.1016/0370-2693(67)90067-6
[55] M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett.B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].
[56] K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys.B 518 (1998) 473 [hep-ph/9711266] [INSPIRE]. · Zbl 0945.81064
[57] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279 [INSPIRE]. · Zbl 0782.68091 · doi:10.1006/jcph.1993.1074
[58] J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun.184 (2013) 1453 [arXiv:1203.6543] [INSPIRE]. · Zbl 1317.68286
[59] C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mtdependence of BR[B → Xsℓ+ℓ−], Nucl. Phys.B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].
[60] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[61] P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys.52 (1977) 11 [INSPIRE]. · doi:10.1007/BF01609069
[62] H. Kleinert and V. Schulte-Frohlinde, Critical properties of ϕ4-theories, (2001) [INSPIRE]. · Zbl 1033.81007
[63] S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys.A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE]. · Zbl 1320.81082
[64] P. Basu and C. Krishnan, ϵ-expansions near three dimensions from conformal field theory, JHEP11 (2015) 040 [arXiv:1506.06616] [INSPIRE]. · Zbl 1388.81628
[65] S. Ghosh, R.K. Gupta, K. Jaswin and A.A. Nizami, ϵ-Expansion in the Gross-Neveu model from conformal field theory, JHEP03 (2016) 174 [arXiv:1510.04887] [INSPIRE].
[66] A. Raju, ϵ-Expansion in the Gross-Neveu CFT, JHEP10 (2016) 097 [arXiv:1510.05287] [INSPIRE]. · Zbl 1390.81537
[67] E.D. Skvortsov, On (Un)Broken Higher-Spin Symmetry in Vector Models, arXiv:1512.05994 [INSPIRE]. · Zbl 1359.81166
[68] S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP11 (2016) 068 [arXiv:1601.01310] [INSPIRE]. · Zbl 1390.81510 · doi:10.1007/JHEP11(2016)068
[69] K. Nii, Classical equation of motion and Anomalous dimensions at leading order, JHEP07 (2016) 107 [arXiv:1605.08868] [INSPIRE]. · Zbl 1390.81171 · doi:10.1007/JHEP07(2016)107
[70] S. Yamaguchi, The ϵ-expansion of the codimension two twist defect from conformal field theory, PTEP2016 (2016) 091B01 [arXiv:1607.05551] [INSPIRE]. · Zbl 1361.81141
[71] V. Bashmakov, M. Bertolini and H. Raj, Broken current anomalous dimensions, conformal manifolds and renormalization group flows, Phys. Rev.D 95 (2017) 066011 [arXiv:1609.09820] [INSPIRE].
[72] C. Hasegawa and Yu. Nakayama, ϵ-Expansion in Critical ϕ3-Theory on Real Projective Space from Conformal Field Theory, Mod. Phys. Lett.A 32 (2017) 1750045 [arXiv:1611.06373] [INSPIRE]. · Zbl 1360.81266
[73] K. Roumpedakis, Leading Order Anomalous Dimensions at the Wilson-Fisher Fixed Point from CFT, JHEP07 (2017) 109 [arXiv:1612.08115] [INSPIRE]. · Zbl 1380.81359 · doi:10.1007/JHEP07(2017)109
[74] S. Giombi, V. Kirilin and E. Skvortsov, Notes on Spinning Operators in Fermionic CFT, JHEP05 (2017) 041 [arXiv:1701.06997] [INSPIRE]. · Zbl 1380.81318 · doi:10.1007/JHEP05(2017)041
[75] F. Gliozzi, A. Guerrieri, A.C. Petkou and C. Wen, Generalized Wilson-Fisher Critical Points from the Conformal Operator Product Expansion, Phys. Rev. Lett.118 (2017) 061601 [arXiv:1611.10344] [INSPIRE]. · doi:10.1103/PhysRevLett.118.061601
[76] F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP04 (2017) 056 [arXiv:1702.03938] [INSPIRE]. · Zbl 1378.81119 · doi:10.1007/JHEP04(2017)056
[77] A. Codello, M. Safari, G.P. Vacca and O. Zanusso, Leading CFT constraints on multi-critical models in d > 2, JHEP04 (2017) 127 [arXiv:1703.04830] [INSPIRE]. · Zbl 1378.81110 · doi:10.1007/JHEP04(2017)127
[78] C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical exponents near the short-range crossover, Phys. Rev. Lett.118 (2017) 241601 [arXiv:1703.03430] [INSPIRE]. · Zbl 1376.82012 · doi:10.1103/PhysRevLett.118.241601
[79] C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys.A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE]. · Zbl 1376.82012
[80] L.F. Alday, Solving CFTs with Weakly Broken Higher Spin Symmetry, JHEP10 (2017) 161 [arXiv:1612.00696] [INSPIRE]. · Zbl 1383.81149 · doi:10.1007/JHEP10(2017)161
[81] K. Sen and A. Sinha, On critical exponents without Feynman diagrams, J. Phys.A 49 (2016) 445401 [arXiv:1510.07770] [INSPIRE]. · Zbl 1352.81062
[82] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett.118 (2017) 081601 [arXiv:1609.00572] [INSPIRE]. · doi:10.1103/PhysRevLett.118.081601
[83] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP05 (2017) 027 [arXiv:1611.08407] [INSPIRE]. · Zbl 1380.81320 · doi:10.1007/JHEP05(2017)027
[84] P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP07 (2017) 019 [arXiv:1612.05032] [INSPIRE]. · Zbl 1380.81308 · doi:10.1007/JHEP07(2017)019
[85] P. Liendo, Revisiting the dilatation operator of the Wilson-Fisher fixed point, Nucl. Phys.B 920 (2017) 368 [arXiv:1701.04830] [INSPIRE]. · Zbl 1364.81150 · doi:10.1016/j.nuclphysb.2017.04.020
[86] Z. Komargodski and N. Seiberg, A Symmetry Breaking Scenario for QCD3, arXiv:1706.08755 [INSPIRE]. · Zbl 1384.81053
[87] H. Goldman and M. Mulligan, Stability of SU(Nc) QCD3from the ϵ-Expansion, Phys. Rev.D 94 (2016) 065031 [arXiv:1606.07067] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.