×

On the cone of effective surfaces on \(\overline{\mathcal{A}}_3\). (English) Zbl 1505.14100

In this nice article the authors study the cone of effective surfaces on the toroidal compactification of the moduli space of complex principally polarized abelian threefolds. The main result determines five extremal effective rays of the cone by constructing five geometrically meaningful families of abelian threefolds over surface bases. In order to prove the result, the authors study in detail the intersection theory and boundary strata of the moduli space as well as the cycle classes of these extremal surfaces. They further conjecture that these extremal rays generate the cone of effective surfaces in this case and more generally generate the cone of effective surfaces on the perfect cone compactification for any dimension bigger than or equal to three.

MSC:

14K10 Algebraic moduli of abelian varieties, classification
14E30 Minimal model program (Mori theory, extremal rays)
14C25 Algebraic cycles

References:

[1] W. Barth and K. Hulek, Projective models of Shioda modular surfaces, Manuscripta Math. 50 (1985), 73-132. MR 784140 · Zbl 0599.14035
[2] F. Bastianelli, A. Kouvidakis, A. F. Lopez, and F. Viviani, Effective cycles on the symmetric product of a curve, I: the diagonal cone, Trans. Amer. Math. Soc. 372 (2019), no. 12, 8709-8758. MR 4029710. With an appendix by Ben Moonen. · Zbl 1439.14036
[3] V. Blankers, Extremality of rational tails boundary strata in Mg,n, Eur. J. Math. 8 (2022), no. 2, 523-539. MR 4419090 · Zbl 1495.14041
[4] D. Chen and I. Coskun, Extremal higher codimension cycles on moduli spaces of curves, Proc. Lond. Math. Soc. (3) 111 (2015), no. 1, 181-204. MR 3404780 · Zbl 1357.14039
[5] D. Chen, G. Farkas, and I. Morrison, Effective divisors on moduli spaces of curves and abelian varieties, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 131-169. MR 3114939 · Zbl 1317.14060
[6] D. Chen and N. Tarasca, Extremality of loci of hyperelliptic curves with marked Weierstrass points, Algebra Number Theory 10 (2016), no. 9, 1935-1948. MR 3576115 · Zbl 1354.14048
[7] I. Coskun, J. Lesieutre, and J. C. Ottem, Effective cones of cycles on blowups of projective space, Algebra Number Theory 10 (2016), no. 9, 1983-2014. MR 3576118 · Zbl 1354.14016
[8] M. Dittmann, R. Salvati Manni, and N. R. Scheithauer, Harmonic theta series and the Kodaira dimension of A 6 , Algebra Number Theory 15 (2021), no. 1, 271-285. MR 4226989 · Zbl 1469.11113
[9] M. Dutour Sikirić, K. Hulek, and A. Schürmann, Smoothness and singularities of the perfect form and the second Voronoi compactification of Ag, Algebr. Geom. 2 (2015), no. 5, 642-653. MR 3421785 · Zbl 1337.14036
[10] C. Erdenberger, S. Grushevsky, and K. Hulek, Intersection theory of toroidal compactifica-tions of A 4 , Bull. London Math. Soc. 38 (2006), no. 3, 396-400. MR 2239033 · Zbl 1099.14035
[11] C. Erdenberger, S. Grushevsky, and K. Hulek, Some intersection numbers of divisors on toroidal compactifications of Ag, J. Algebraic Geom. 19 (2010), no. 1, 99-132. MR 2551758 · Zbl 1189.14050
[12] M. Fulger and B. Lehmann, Morphisms and faces of pseudo-effective cones, Proc. Lond. Math. Soc. (3) 112 (2016), no. 4, 651-676. MR 3483128 · Zbl 1348.14039
[13] M. Galeotti and S. Perna, Moduli spaces of abstract and embedded Kummer varieties, Inter-nat. J. Math. 32 (2021), no. 8, Paper No. 2150054, 28. MR 4300443 · Zbl 1486.14019
[14] A. Gibney, S. Keel, and I. Morrison, Towards the ample cone of Mg,n, J. Amer. Math. Soc. 15 (2002), no. 2, 273-294. MR 1887636 · Zbl 0993.14009
[15] S. Grushevsky, Geometry of Ag and its compactifications, Algebraic geometry-Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 193-234. MR 2483936 · Zbl 1171.14026
[16] S. Grushevsky, K. Hulek, and O. Tommasi, Stable cohomology of the perfect cone toroidal compactification of Ag, J. Reine Angew. Math. 741 (2018), 211-254. MR 3836148 · Zbl 1435.14044
[17] S. Grushevsky and D. Zakharov, The zero section of the universal semiabelian variety and the double ramification cycle, Duke Math. J. 163 (2014), no. 5, 953-982. MR 3189435 · Zbl 1302.14039
[18] K. Hulek, Nef divisors on moduli spaces of abelian varieties, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 255-274. MR 1760880 · Zbl 1079.14052
[19] K. Hulek, C. Kahn, and S. H. Weintraub, Moduli spaces of abelian surfaces: compactification, degenerations, and theta functions, De Gruyter Expositions in Mathematics, vol. 12, Walter de Gruyter & Co., Berlin, 1993. MR 1257185 · Zbl 0809.14035
[20] K. Hulek and G. K. Sankaran, The nef cone of toroidal compactifications of A 4 , Proc. London Math. Soc. (3) 88 (2004), no. 3, 659-704. MR 2044053 · Zbl 1062.14058
[21] K. Hulek and O. Tommasi, Cohomology of the toroidal compactification of A 3 , Vector bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Providence, RI, 2010, pp. 89-103. MR 2681723 · Zbl 1223.14050
[22] J.-I. Igusa, A desingularization problem in the theory of Siegel modular functions, Math. Ann. 168 (1967), 228-260. MR 218352 · Zbl 0145.09702
[23] S. Mullane, On the effective cone of higher codimension cycles in Mg,n, Math. Z. 295 (2020), no. 1-2, 265-288. MR 4100009 · Zbl 1445.14045
[24] S. Mullane, Non-polyhedral effective cones from the moduli space of curves, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6397-6415. MR 4302164 · Zbl 1473.14050
[25] L. Schaffler, On the cone of effective 2-cycles on M 0,7 , Eur. J. Math. 1 (2015), no. 4, 669-694. MR 3426173 · Zbl 1337.14028
[26] C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988), no. 2, 177-199. MR 923487 · Zbl 0631.14032
[27] N. Shepherd-Barron, An exceptional locus in the perfect compactification of Ag, preprint arXiv:1604.05954 [math.AG].
[28] N. I. Shepherd-Barron, Perfect forms and the moduli space of abelian varieties, Invent. Math. 163 (2006), no. 1, 25-45. MR 2208417 · Zbl 1088.14011
[29] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. MR 429918 · Zbl 0226.14013
[30] Y.-S. Tai, On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math. 68 (1982), no. 3, 425-439. MR 669424 · Zbl 0508.14038
[31] R. Tsushima, A formula for the dimension of spaces of Siegel cusp forms of degree three, Amer. J. Math. 102 (1980), no. 5, 937-977. MR 590640 · Zbl 0458.10024
[32] G. van der Geer, The Chow ring of the moduli space of abelian threefolds, J. Algebraic Geom. 7 (1998), no. 4, 753-770. MR 1642753 · Zbl 0952.14003
[33] Mathematics Department, Stony Brook University, Stony Brook, NY 11794-3651, USA E-mail address: sam@math.stonybrook.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.