×

A uniformly convergent numerical method for singularly perturbed semilinear integro-differential equations with two integral boundary conditions. (English) Zbl 1534.65270

Summary: This paper purposes to present a new discrete scheme for the singularly perturbed semilinear Volterra-Fredholm integro-differential equation including two integral boundary conditions. Initially, some analytical properties of the solution are given. Then, using the composite numerical integration formulas and implicit difference rules, the finite difference scheme is established on a uniform mesh. Error approximations for the approximate solution and stability bounds are investigated in the discrete maximum norm. Finally, a numerical example is solved to show \(\varepsilon \)-uniform convergence of the suggested difference scheme.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
Full Text: DOI

References:

[1] Farrell, P.; Hegarty, A.; Miller, J. J. H.; O’Riordan, E.; Shishkin, G. I., Robust Computational Techniques for Boundary Layers (2000), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 0964.65083 · doi:10.1201/9781482285727
[2] Kadalbajoo, M. K.; Gupta, V., A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput., 217, 3641-3716 (2010) · Zbl 1208.65105
[3] Miller, J. J. H.; O’Riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (1996), Singapore: World Scientific, Singapore · Zbl 0915.65097 · doi:10.1142/2933
[4] Nayfeh, A. H., Introduction to Perturbation Techniques (2011), New York: Wiley, New York
[5] O’Malley, R. E., Singular Perturbation Methods for Ordinary Differential Equations (1991), New York: Springer, New York · Zbl 0743.34059 · doi:10.1007/978-1-4612-0977-5
[6] Roos, H.-G.; Stynes, M.; Tobiska, L., Numerical Methods for Singularly Perturbed Differential Equations (1996), Berlin: Springer-Verlag, Berlin · Zbl 0844.65075 · doi:10.1007/978-3-662-03206-0
[7] Doolan, E. P.; Miller, J. J. H.; Schilders, W. H. A., Uniform Numerical Methods for Problems with Initial and Boundary Layers (1980), Dublin: Boole, Dublin · Zbl 0459.65058
[8] Hussain, E. A.; Al-Saif, N. S. M., Design feed forward neural network for solving two dimension singularly perturbed integro-differential and integral equation, Int. J. Appl. Math. Res., 2, 134-139 (2013)
[9] Zhongdi, C.; Lifeng, X., A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies, Matrix, 1, 20-22 (2006)
[10] Il’in, A. M.; Khasminskii, R. Z.; Yin, G., Asymptotic expansions of solutions of integrodifferential equations for transition densities of singularly perturbed switching diffusions: Rapid switchings, J. Math. Anal., 238, 516-539 (1999) · Zbl 0933.45004 · doi:10.1006/jmaa.1998.6532
[11] Smirnova, V. B.; Utina, N. V.; Proskurnikov, A. V., On periodic solutions of singularly perturbed integro-differential Volterra equations with periodic nonlinearities, IFAC-Papers OnLine, 49, 160-165 (2016) · doi:10.1016/j.ifacol.2016.07.1002
[12] M. K. Dauylbayev and B. Uaissov, “Integral boundary-value problem with initial jumps for a singularly perturbed system of integrodifferential equations,” Chaos Solitons Fractals 141, 110328 (2020). · Zbl 1496.45002
[13] Colombo, R. M.; Garavello, M.; Marcellini, F.; Rossi, E., An age and space structured SIR model describing the Covid-19 pandemic, J. Math. Ind., 10, 22 (2020) · Zbl 1469.92107 · doi:10.1186/s13362-020-00090-4
[14] Archibasov, A. A.; Korobeinikov, A.; Sobolev, V. A., Asymptotic expansions of solutions in a singularly perturbed model of virus evolution, Comput. Math. Math. Phys., 55, 240-250 (2015) · Zbl 1321.35245 · doi:10.1134/S0965542515020037
[15] Busse, J. E.; Cuadrado, S.; Marciniak-Czochra, A., Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation, J. Math. Biol., 84, 10 (2022) · Zbl 1483.92058 · doi:10.1007/s00285-021-01708-w
[16] Rohaninasab, N.; Maleknejad, K.; Ezzati, R., Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method, Appl. Math. Comput., 328, 171-188 (2018) · Zbl 1427.65425
[17] Behiry, S. H.; Mohamed, S. I., Solving high-order nonlinear Volterra-Fredholm integrodifferential equations by differential transform method, Nat. Sci., 4, 581-587 (2012)
[18] Araghi, F.; Behzadi, S. S., Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using Homotopy analysis method, J. Appl. Math. Comput., 37, 1-12 (2011) · Zbl 1291.65374 · doi:10.1007/s12190-010-0417-4
[19] Abed, A. M.; Younis, M. F.; Hamoud, A. A., Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27, 189-201 (2022) · Zbl 1484.49057
[20] Wazwaz, A. M., Linear and Nonlinear Integral Equations (2011), Berlin: Springer, Berlin · Zbl 1227.45002 · doi:10.1007/978-3-642-21449-3
[21] Farshadmoghadam, F.; Deilami Azodi, H.; Yaghouti, M. R., An improved radial basis functions method for the high-order Volterra-Fredholm integro-differential equations, Math. Sci., 16, 445-458 (2022) · Zbl 1510.65326 · doi:10.1007/s40096-021-00432-2
[22] Hesameddini, E.; Shahbazi, M., Solving multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type using Bernstein polynomials method, Appl. Numer. Math., 136, 122-138 (2019) · Zbl 1405.65168 · doi:10.1016/j.apnum.2018.10.003
[23] Shahsavaran, A., Numerical solution of linear Volterra and Fredholm integro differential equations using Haar wavelets, Math. Sci. J., 6, 85-96 (2010)
[24] Fathy, M.; El-Gamel, M.; El-Azab, M. S., Legendre-Galerkin method for the linear Fredholm integro-differential equations, Appl. Math. Comput., 243, 789-800 (2014) · Zbl 1337.65103
[25] Riahi Beni, M., Boubaker matrix polynomials and nonlinear Volterra-Fredholm integrodifferential equations, Iran. J. Sci. Technol. Trans. A: Sci., 46, 547-561 (2022) · doi:10.1007/s40995-022-01260-2
[26] S. Segni, M. Ghiat, and H. Guebbai, “New approximation method for Volterra nonlinear integro-differential equation,” Asian-Eur. J. Math. 12 (01), 1950016 (2019). · Zbl 1406.65140
[27] Nicoud, F.; Schönfeld, T., Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Methods Fluids, 40, 457-465 (2002) · Zbl 1061.76517 · doi:10.1002/fld.299
[28] Shi, P., Weak solution to an evolution problem with a nonlocal constraint, SIAM J. Math. Anal., 24, 46-58 (1993) · Zbl 0810.35033 · doi:10.1137/0524004
[29] Cahlon, B.; Kulkarni, D. M.; Shi, P., Stepwise stability for the heat equation with a nonlocal constraint, SIAM J. Numer. Anal., 32, 571-593 (1995) · Zbl 0831.65094 · doi:10.1137/0732025
[30] Geng, F.; Cui, M., New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions, J. Comput. Appl. Math., 233, 165-172 (2009) · Zbl 1205.65216 · doi:10.1016/j.cam.2009.07.007
[31] Ahsan, M.; Bohner, M.; Ullah, A.; Khan, A. A.; Ahmad, S., A Haar wavelet multiresolution collocation method for singularly perturbed differential equations with integral boundary conditions, Math. Comput. Simul., 204, 166-180 (2023) · Zbl 1540.65216 · doi:10.1016/j.matcom.2022.08.004
[32] Cakir, M., A numerical study on the difference solution of singularly perturbed semilinear problem with integral boundary condition, Math. Model. Anal., 21, 644-658 (2016) · Zbl 1490.65145 · doi:10.3846/13926292.2016.1201702
[33] Cakir, M.; Arslan, D., A new numerical approach for a singularly perturbed problem with two integral boundary conditions, Comput. Appl. Math., 40, 1-17 (2021) · Zbl 1476.65150 · doi:10.1007/s40314-021-01577-5
[34] Liu, L. B.; Long, G.; Cen, Z., A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition, Numer. Algorithms, 83, 719-739 (2020) · Zbl 1433.65137 · doi:10.1007/s11075-019-00700-2
[35] Sekar, E.; Tamilselvan, A., Singularly perturbed delay differential equations of convection-diffusion type with integral boundary condition, J. Appl. Math. Comput., 59, 701-722 (2019) · Zbl 1418.65089 · doi:10.1007/s12190-018-1198-4
[36] Adzic, N., Spectral approximation and nonlocal boundary value problems, Novi Sad J. Math., 30, 1-10 (2000)
[37] Benchohra, M.; Ntouyas, S. K., Existence of solutions of nonlinear differential equations with nonlocal conditions, J. Math. Anal. Appl., 252, 477-483 (2000) · Zbl 0971.34045 · doi:10.1006/jmaa.2000.7106
[38] Chegis, R., The numerical solution of singularly perturbed nonlocal problem, Liet. Mat. Rink., 28, 144-152 (1988) · Zbl 0647.65054
[39] Herceg, D., “On the numerical solution of a singularly perturbed nonlocal problem,” Univ. Novom Sadu Zb. Rad. Prirod.-, Mat. Fak. Ser., 20, 1-10 (1990) · Zbl 0748.65062
[40] Boucherif, A., Second-order boundary value problems with integral boundary conditions, Nonlinear Anal. Theory Methods Appl., 70, 364-371 (2009) · Zbl 1169.34310 · doi:10.1016/j.na.2007.12.007
[41] Hamoud, A. A.; Issa, M. B.; Ghadle, K. P., Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Funct. Anal. Appl., 23, 797-805 (2018) · Zbl 1423.45005
[42] Hamoud, A. A.; Ghadle, K. P., Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations, J. Sib. Fed. Univ. Math. Phys., 11, 692-701 (2018) · Zbl 1532.65123 · doi:10.17516/1997-1397-2018-11-6-692-70
[43] Iragi, B. C.; Munyakazi, J. B., New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations, Appl. Math. Inf. Sci., 12, 517-527 (2018) · doi:10.18576/amis/120306
[44] Iragi, B. C.; Munyakazi, J. B., A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97, 759-771 (2020) · Zbl 1480.65377 · doi:10.1080/00207160.2019.1585828
[45] Amiraliyev, G. M.; Yapman, Ö.; Kudu, M., A fitted approximate method for a Volterra delay-integro-differential equation with initial layer, Hacet. J. Math. Stat., 48, 1417-1429 (2019) · Zbl 1488.65735
[46] Yapman, Ö.; Amiraliyev, G. M.; Amirali, I., Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay, J. Comput. Appl. Math., 355, 301-309 (2019) · Zbl 1415.65170 · doi:10.1016/j.cam.2019.01.026
[47] Kudu, M.; Amirali, I.; Amiraliyev, G. M., A finite-difference method for a singularly perturbed delay integro-differential equation, J. Comput. Appl. Math., 308, 379-390 (2016) · Zbl 1346.65076 · doi:10.1016/j.cam.2016.06.018
[48] Mbroh, N. A.; Noutchie, S. C. O.; Massoukou, R. Y. M. P., A second order finite difference scheme for singularly perturbed Volterra integro-differential equation, Alex. Eng. J., 59, 2441-2447 (2020) · doi:10.1016/j.aej.2020.03.007
[49] Yapman, Ö.; Amiraliyev, G. M., A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97, 1293-1302 (2020) · Zbl 1480.65383 · doi:10.1080/00207160.2019.1614565
[50] Tao, X.; Zhang, Y., The coupled method for singularly perturbed Volterra integro-differential equations, Adv. Differ. Equations, 2019, 217 (2019) · Zbl 1459.65248 · doi:10.1186/s13662-019-2139-8
[51] Panda, A.; Mohapatra, J.; Amirali, I., A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math., 18, 231 (2021) · Zbl 07418711 · doi:10.1007/s00009-021-01873-8
[52] Amiraliyev, G. M.; Durmaz, M. E.; Kudu, M., Uniform convergence results for singularly perturbed Fredholm integro-differential equation, J. Math. Anal., 9, 55-64 (2018)
[53] Amiraliyev, G. M.; Durmaz, M. E.; Kudu, M., Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation, Bull. Belg. Math., 27, 71-88 (2020) · Zbl 1442.65136
[54] Cimen, E.; Cakir, M., A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem, Comput. Appl. Math., 40, 42 (2021) · Zbl 1476.65336 · doi:10.1007/s40314-021-01412-x
[55] Durmaz, M. E.; Amiraliyev, G. M., A robust numerical method for a singularly perturbed Fredholm integro-differential equation, Mediterr. J. Math., 18, 24 (2021) · Zbl 1461.65216 · doi:10.1007/s00009-020-01693-2
[56] Durmaz, M. E.; Amirali, I.; Amiraliyev, G. M., An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition, J. Appl. Math. Comput., 69, 505-528 (2023) · Zbl 1512.65301 · doi:10.1007/s12190-022-01757-4
[57] Huang, J.; Cen, Z.; Xu, A.; Liu, L. B., A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algorithms, 83, 549-563 (2020) · Zbl 1437.65239 · doi:10.1007/s11075-019-00693-y
[58] Kalimbetov, B.; Safonov, V., Regularization method for singularly perturbed integro-differential equations with rapidly oscillating coefficients and rapidly changing kernels, Axioms, 9, 131 (2020) · doi:10.3390/axioms9040131
[59] Liang, Y.; Liu, L. B.; Cen, Z., A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations, Comput. Appl. Math., 39, 255 (2020) · Zbl 1463.65177 · doi:10.1007/s40314-020-01303-7
[60] Panda, A.; Mohapatra, J.; Reddy, N. R., A comparative study on the numerical solution for singularly perturbed Volterra integro-differential equations, Comput. Math. Model., 32, 364-375 (2021) · Zbl 1492.65216 · doi:10.1007/s10598-021-09536-9
[61] Parand, K.; Rad, J. A., An approximation algorithm for the solution of the singularly perturbed Volterra integro-differential and Volterra integral equations, Int. J. Nonlinear Sci., 12, 430-441 (2011) · Zbl 1396.65164
[62] Ramos, J. I., Piecewise-quasilinearization techniques for singularly perturbed Volterra integro-differential equations, Appl. Math. Comput., 188, 1221-1233 (2007) · Zbl 1118.65130
[63] Zhumanazarova, A.; Cho, Y. I., Asymptotic convergence of the solution of a singularly perturbed integro-differential boundary value problem, Mathematics, 8, 213 (2020) · doi:10.3390/math8020213
[64] Cakir, M.; Gunes, B., Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations, Georgian Math. J., 29, 193-203 (2022) · Zbl 1491.65167 · doi:10.1515/gmj-2021-2130
[65] Cakir, M.; Gunes, B., A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh, Hacet. J. Math. Stat., 51, 787-799 (2022) · Zbl 1513.65513 · doi:10.15672/hujms.950075
[66] Cakir, M.; Gunes, B., A fitted operator finite difference approximation for singularly perturbed Volterra-Fredholm integro-differential equations, Mathematics, 10, 3560 (2022) · doi:10.3390/math10193560
[67] Samarskii, A. A., The Theory of Difference Schemes (2011), Boca Raton: CRC, Boca Raton
[68] Cakir, M.; Amiraliyev, G. M., Numerical solution of a singularly perturbed three-point boundary value problem, Int. J. Comput. Math., 84, 1465-1481 (2007) · Zbl 1130.65073 · doi:10.1080/00207160701296462
[69] Amiraliyev, G.; Cakir, M., A uniformly convergent difference scheme for a singularly perturbed problem with convective term and zeroth order reduced equation, Int. J. Appl. Math., 2, 1407-1420 (2000) · Zbl 1051.65081
[70] Amiraliyev, G. M.; Mamedov, Y. D., Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations, Turk. J. Math., 19, 207-222 (1995) · Zbl 0859.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.