×

Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation. (English) Zbl 1483.92058

Summary: In this paper we consider a system of non-linear integro-differential equations (IDEs) describing evolution of a clonally heterogeneous population of malignant white blood cells (leukemic cells) undergoing mutation and clonal selection. We prove existence and uniqueness of non-trivial steady states and study their asymptotic stability. The results are compared to those of the system without mutation. Existence of equilibria is proved by formulating the steady state problem as an eigenvalue problem and applying a version of the Krein-Rutmann theorem for Banach lattices. The stability at equilibrium is analysed using linearisation and the Weinstein-Aronszajn determinant which allows to conclude local asymptotic stability.

MSC:

92C37 Cell biology
92D25 Population dynamics (general)
92C15 Developmental biology, pattern formation
45K05 Integro-partial differential equations
35B35 Stability in context of PDEs

References:

[1] Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology, 4 edn. Garland Science
[2] Almeida, L.; Bagnerini, P.; Fabrini, G.; Hughes, B.; Lorenzi, T., Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model, ESAIM Math Model Numer Anal, 53, 1157-1190 (2019) · Zbl 1442.35193
[3] Alon, U., An introduction to systems biology: design principles of biological circuits (2019), Florida: CRC Press, Florida · Zbl 1431.92001
[4] Arendt, W.; Grabosch, A.; Greiner, G.; Groh, U.; Lotz, HP; Moustakas, U.; Nagel, R.; Neubrander, F.; Schlotterbeck, U., One-parameter semigroups of positive operators (1986), Berlin: Springer, Berlin · Zbl 0585.47030
[5] Brezis, H., Functional analysis (2011), New York: Springer, New York · Zbl 1220.46002
[6] Bürger, R., Perturbations of positive semigroups and applications to population genetics, Math Z, 197, 2, 259-272 (1988) · Zbl 0618.47036
[7] Bürger, R.; Bomze, IM, Stationary distributions under mutation-selection balance: structure and properties, Adv Appl Probab, 28, 1, 227-251 (1996) · Zbl 0858.92022
[8] Busse, JE; Gwiazda, P.; Marciniak-Czochra, A., Mass concentration in a nonlocal model of clonal selection, J Math Biol, 73, 4, 1001-1033 (2016) · Zbl 1360.92035
[9] Calsina, À.; Cuadrado, S., Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J Math Biol, 48, 2, 135-159 (2004) · Zbl 1078.92051
[10] Calsina, À.; Cuadrado, S., Stationary solutions of a selection mutation model: the pure mutation case, Math Models Methods Appl Sci, 15, 7, 1091-1117 (2005) · Zbl 1081.92029
[11] Calsina, À.; Cuadrado, S., Asymptotic stability of equilibria of selection-mutation equations, J Math Biol, 54, 4, 489-511 (2007) · Zbl 1115.92042
[12] Capasso V, Thieme H (1989) A threshhold theorem for a reaction-diffusion epidemic system. In: Differential equations and applications, Vol. I, II (Columbus, OH, 1988), pp. 128-133. Ohio Univ. Press, Athens, OH · Zbl 0714.92020
[13] Clément, P.; Heijmans, HJAM; Angenent, S.; van Duijn, CJ; de Pagter, B., One-parameter semigroups, CWI Monographs (1987), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0636.47051
[14] Cuadrado, S., Equilibria of a predator prey model of phenotype evolution, J Math Anal Appl, 354, 1, 286-294 (2009) · Zbl 1160.92039
[15] Cuadrado, S., Stability of equilibria of a predator prey model of phenotype evolution, Math Biosci Eng, 6, 701-718 (2009) · Zbl 1178.92044
[16] Daners, D.; Medina, PK, Abstract evolution equations, periodic problems and applications (1992), London: Chapman & Hall/CRC, London · Zbl 0789.35001
[17] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J Math Biol, 28, 4, 365-382 (1990) · Zbl 0726.92018
[18] Diekmann, O.; Jabin, PE; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a hamilton-jacobi approach, Theor Popul Biol, 67, 4, 257-271 (2005) · Zbl 1072.92035
[19] Düll, C.; Gwiazda, P.; Marciniak-Czochra, A.; Skrzeczkowski, J., Spaces of measures and their applications to structured population models (2021), London: Cambridge University Press, London · Zbl 1525.92001
[20] Eveson, SP, Compactness criteria for integral operators in \(L^\infty\) and \(L^1\) spaces, Proc Amer Math Soc, 123, 12, 3709-3716 (1995) · Zbl 0841.47028 · doi:10.2307/2161898
[21] Getto, P.; Marciniak-Czochra, A.; Nakata, Y.; Vivanco, M., Global dynamics of two-compartment models for cell production systems with regulatory mechanisms, Math Biosci, 245, 258-268 (2013) · Zbl 1308.92039
[22] Gillespie, JH, Population genetics: a concise guide (2004), Baltimore: JHU Press, Baltimore
[23] Greene, J.; Lavi, O.; Gottesman, MM; Levy, D., The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull Math Biol, 76, 3, 627-653 (2014) · Zbl 1329.92055
[24] Greiner G (1984) A typical Perron-Frobenius theorem with applications to an age-dependent population equation. In: Infinite-dimensional systems (Retzhof, 1983), Lecture Notes in Math., vol. 1076, pp. 86-100. Springer, Berlin · Zbl 0568.47031
[25] Kato, T., Perturbation theory for linear operators (1984), Heidelberg: Springer Science & Business Media, Heidelberg · Zbl 0531.47014
[26] Knauer, F.; Stiehl, T.; Marciniak-Czochra, A., Oscillations in a white blood cell production model with multiple differentiation stages, J Math Biol, 80, 3, 575-600 (2019) · Zbl 1440.34047
[27] Kondo, S.; Okamura, S.; Asano, Y.; Harada, M.; Niho, Y., Human granulocyte colony-stimulating factor receptors in acute myelogenous leukemia, Eur J Haematol, 46, 223-230 (1991)
[28] Layton, J.; Hockman, H.; Sheridan, W.; Morstyn, G., Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor, Blood, 74, 1303-1307 (1989)
[29] Lorenzi, T.; Chisholm, R.; Clairambault, J., Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations, Biol Direct, 11, 1-17 (2016)
[30] Lorenzi, T.; Marciniak-Czochra, A.; Stiehl, T., Mathematical modeling of leukemogenesis and cancer stem cell dynamics, J Math Biol, 79, 1587-1621 (2019) · Zbl 1423.35383
[31] Lorz, A.; Lorenzi, T.; Hochberg, ME; Clairambault, J.; Perthame, B., Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Math Model Numerical Anal, 47, 2, 377-399 (2013) · Zbl 1274.92025
[32] Lutz, C.; Hoang, VT; Buss, E.; Ho, AD, Identifying leukemia stem cells - is it feasible and does it matter?, Cancer Lett, 338, 10-14 (2012)
[33] Marciniak-Czochra, A.; Stiehl, T.; Ho, AD; Jäger, W.; Wagner, W., Modeling of asymmetric cell division in hematopoietic stem cells-regulation of self-renewal is essential for efficient repopulation, Stem Cells Develop, 18, 3, 377-386 (2009)
[34] Metzeler, K.; Maharry, K.; Kohlschmidt, J.; Volinia, S.; Mrozek, K.; Becker, H.; Nicolet, D.; Whitman, S.; Mendler, J.; Schwind, S.; Eisfeld, A.; Wu, Y.; Powell, B.; Carter, T.; Wetzler, M.; Kolitz, J.; Baer, M.; Carroll, A.; Stone, R.; Caligiuri, M.; Marcucci, G.; Bloomfield, C., A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia, Leukemia, 27, 10, 2023-2031 (2013)
[35] Mirrahimi S (2013) Adaptation and migration of a population between patches. Discrete & Continuous Dynamical Systems-Series B 18(3) · Zbl 1263.35021
[36] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), New York: Springer-Verlag, New York · Zbl 0516.47023
[37] Perthame, B.; Barles, G., Dirac concentrations in lotka-volterra parabolic pdes, Indiana Univ Math J, 57, 7, 3275-3301 (2008) · Zbl 1172.35005
[38] Schaefer HH (1974) Banach lattices and positive operators. Springer-Verlag, New York-Heidelberg. Die Grundlehren der mathematischen Wissenschaften, Band 215 · Zbl 0296.47023
[39] Stiehl, T.; Baran, N.; Ho, A.; Marciniak-Czochra, A., Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival, Can Res, 75, 940-949 (2015)
[40] Stiehl, T.; Baran, N.; Ho, AD; Marciniak-Czochra, A., Clonal selection and therapy resistance in acute leukemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, J Royal Soc Interface, 11, 20140079 (2014)
[41] Stiehl, T.; Ho, A.; Marciniak-Czochra, A., Cytokine response of leukemic cells has impact on patient prognosis: insights from mathematical modeling, Sci Rep, 8, 2809 (2018)
[42] Stiehl, T.; Lutz, C.; Marciniak-Czochra, A., Emergence of heterogeneity in acute leukemias, Biol Direct, 11, 1, 51 (2016)
[43] Stiehl, T.; Marciniak-Czochra, A., Stem cell self-renewal in regeneration and cancer: Insights from mathematical modeling, Current Opinion Syst Biol, 5, 112-120 (2017)
[44] Stiehl, T.; Wang, W.; Lutz, C.; Marciniak-Czochra, A., Mathematical modeling provides evidence for niche competition in human aml and serves as a tool to improve risk stratification, Can Res, 80, 18, 3983-3992 (2020)
[45] Thieme, HR, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J Appl Math, 70, 1, 188-211 (2009) · Zbl 1191.47089
[46] Van Delft, FW; Horsley, S.; Colman, S.; Anderson, K.; Bateman, C.; Kempski, H.; Zuna, J.; Eckert, C.; Saha, V.; Kearney, L., Clonal origins of relapse in etv6-runx1 acute lymphoblastic leukemia, Blood, 117, 6247-54 (2011)
[47] Wang, W.; Stiehl, T.; Raffel, S.; Hoang, V.; Hoffmann, I.; Poisa-Beiro, L.; Saeed, B.; Blume, R.; Manta, L.; Eckstein, V.; Bochtler, T.; Wuchter, P.; Essers, M.; Jauch, A.; Trumpp, A.; Marciniak-Czochra, A.; Ho, A.; Lutz, C., Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia, Haematologica, 102, 9, 1567-1577 (2017)
[48] Webb, GF, Theory of nonlinear age-dependent population dynamics (1985), Florida: CRC Press, Florida · Zbl 0555.92014
[49] Weis, L., The stability of positive semigroups on \(L_p\) spaces, Proc Amer Math Soc, 123, 10, 3089-3094 (1995) · Zbl 0851.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.