×

Local thermal non-equilibrium effects on thermal convection in a rotating anisotropic porous layer. (English) Zbl 1391.76748

Summary: Effects of local thermal non-equilibrium (LTNE) on thermal convection in a rotating fluid-saturated anisotropic porous layer are investigated. The analysis has been carried out by constructing a simplified model consisting of six coupled nonlinear ordinary differential equations. The study reveals the equivalence of linear and nonlinear stability boundaries indicating the linearized instability theory captures completely the physics of the onset of convection. Results show that the presence of rotation is to introduce oscillatory convection once the Taylor number exceeds a threshold value. The preferred mode of instability is found to be influenced significantly by the mechanical anisotropy parameter as well and it is demonstrated that it has both stabilizing and destabilizing effects on the steady onset in the presence of rotation. Besides, asymptotic analyses for small and large values of the interphase heat transfer coefficient are presented. Heat transport is calculated in terms of Nusselt number. Also, the coupled nonlinear ordinary differential equations are solved numerically using Runge-Kutta method and the transient behavior of Nusselt number is demonstrated for various values of physical parameters.

MSC:

76S05 Flows in porous media; filtration; seepage
76U05 General theory of rotating fluids
76E06 Convection in hydrodynamic stability
76R10 Free convection
Full Text: DOI

References:

[1] Virto, L.; Carbonell, M.; Castilla, R.; Gamez-Montero, P. J., Heating of saturated porous media in practice: several causes of local thermal non-equilibrium, Int. J. Heat Mass Transfer, 52, 5412-5422 (2009) · Zbl 1177.80065
[2] Straughan, B., Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid, Proc. R. Soc. A, 469, 20130187 (2013) · Zbl 1371.76143
[3] Banu, N.; Rees, D. A.S., Onset of Darcy-Bénard convection using a thermal non-equilibrium model, Int. J. Heat Mass Transfer, 45, 2221-2228 (2002) · Zbl 1027.76015
[4] Malashetty, M. S.; Shivakumara, I. S.; Sridhar, K., The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model, Int. J. Heat Mass Transfer, 48, 1155-1163 (2005) · Zbl 1189.76203
[5] Straughan, B., Global non-linear stability in porous convection with a thermal non-equilibrium model, Proc. R. Soc. London, 462, 409-418 (2006) · Zbl 1149.76626
[6] (Vafai, K., Handbook of Porous Media, edited (2000), Marcel Dekker: Marcel Dekker New York) · Zbl 0954.00016
[7] (Vafai, K., Handbook of Porous Media (2005), Taylor and Francis/CRC: Taylor and Francis/CRC Boca Raton, FL) · Zbl 1315.76005
[8] (Vadasz, P., Emerging Topics in Heat and Mass Transfer in Porous Media (2008), Springer: Springer New York)
[9] Nield, D. A.; Bejan, A., Convection in Porous Media (2013), Springer-Verlag: Springer-Verlag New York · Zbl 1268.76001
[11] McKibbin, R., Convection and heat transfer in layered and anisotropic porous media, (Quintard, M.; Todorovic, M., Heat and Mass Transfer in Porous Media (1992), Elsevier: Elsevier Amsterdam), 327-336
[12] Storesletten, L., Effects of anisotropy on convective flow through porous media, (Ingham, D. B.; Pop, I., Transport Phenomena in Porous Media (1998), Pergamon Press: Pergamon Press Oxford), 261-283
[13] Storesletten, L., Effects of anisotropy on convection in horizontal and inclined porous layers, (Ingham, D. B.; etal., Emerging Technologies and Techniques in Porous Media (2004), Kluwer Academic Publishers: Kluwer Academic Publishers Netherlands), 285-306 · Zbl 1181.76120
[14] Malashetty, M. S.; Shivakumara, I. S.; Sridhar, K., The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model, Transp. Porous Med., 60, 199-215 (2005)
[15] Shivakumara, I. S.; Lee, Jinho; Mamatha, A. L.; Ravisha, M., Boundary and thermal non-equilibrium effects on convective instability in an anisotropic porous layer, J. Mech. Sci. Technol., 25, 4, 911-921 (2011)
[16] Qin, Y.; Kaloni, P. N., Nonlinear stability problem of a rotating porous layer, Q. Appl. Math., 53, 1, 129-142 (1995) · Zbl 0816.76035
[17] Vadasz, P., Coriolis effect on gravity-driven convection in a rotating porous layer heated from below, J. Fluid Mech., 376, 351-375 (1998) · Zbl 0943.76033
[18] Vadasz, P., Flow and thermal convection in rotating porous media, (Vafai, K., Handbook of Porous Media (2000), Marcel Dekker Inc: Marcel Dekker Inc New York), 395-440 · Zbl 1107.76411
[19] Straughan, B., A sharp nonlinear stability threshold in rotating porous convection, Proc. R. Soc. London, 457, 87-93 (2001) · Zbl 0984.76029
[20] Govender, S., Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation, Transp. Porous Med., 51, 315-326 (2003)
[21] Malashetty, M. S.; Swamy, Mahantesh; Kulkarni, Sridhar, Thermal convection in a rotating porous layer using a thermal non equilibrium model, Phys. Fluids, 19 (2007), 054102-1 054102-16 · Zbl 1146.76480
[22] Shivakumara, I. S.; Savitha, M. N.; Chavaraddi, K. B.; Devaraju, N., Bifurcation analysis for thermal convection in a rotating porous layer, Meccanica, 44, 225-238 (2009) · Zbl 1254.76083
[23] Falsaperla, P.; Mulone, G.; Straughan, B., Rotating porous convection with prescribed heat flux, Int. J. Eng. Sci., 48, 685-692 (2010) · Zbl 1213.76193
[24] Govender, S., Coriolis effect on the stability of centrifugally driven convection in a rotating anisotropic porous layer subjected to gravity, Transp. Porous Med., 67, 219-227 (2007)
[25] Govender, S.; Vadasz, P., The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium, Transp. Porous Med., 69, 55-66 (2007)
[26] Palm, E.; Tyvand, A., Thermal convection in a rotating porous layer, J. Appl. Math. Phys. (ZAMP), 35, 122-123 (1984) · Zbl 0539.76115
[27] Epherre, J. F., Criterion for the appearance of natural convection in an anisotropic porous layer, Int. J. Chem. Eng. (English translation), 17, 615-616 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.