×

Rotating porous convection with prescribed heat flux. (English) Zbl 1213.76193

Summary: The problem of thermal convection in a rotating horizontal layer of porous medium is considered. The porous medium is described by the equations of Darcy. A novel aspect of this work is to consider boundary conditions for the temperature of Newton-Robin type with heat flux prescribed as a limiting case. The effect of rotation is found to be crucial. For the Taylor number small enough the critical wave number is zero but we find a threshold such that for Taylor numbers beyond this non-zero critical wave numbers are found. The threshold is verified via a weakly nonlinear analysis. Finally, a sharp global nonlinear stability analysis is given.

MSC:

76S05 Flows in porous media; filtration; seepage
35Q79 PDEs in connection with classical thermodynamics and heat transfer
76R05 Forced convection
76U05 General theory of rotating fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press.; S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press. · Zbl 0142.44103
[2] Vadasz, P., Flow in Rotating Porous Media (1997), Computational Mechanics Publications: Computational Mechanics Publications Southampton, (Chapter 4) · Zbl 1107.76411
[3] Vadasz, P., Coriolis effect on gravity-driven convection in a rotating porous layer heated from below, J. Fluid Mech., 376, 351-375 (1998), ISSN: 0022-1120 · Zbl 0943.76033
[4] Vadasz, P., Free Convection in A Rotating Porous Media (1998), Computational Mechanics Publications, Elsevier: Computational Mechanics Publications, Elsevier Southampton, pp. 285-312
[5] Nield, D. A., Modeling the effects of a magnetic field or rotation on flow in a porous medium: momentum equation and anisotropic permeability analogy, Int. J. Heat Mass Transfer, 42, 19, 3715-3718 (1999), ISSN: 0017-9310 · Zbl 0944.76595
[6] Govender, S.; Vadasz, P., The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium, Transport Porous Media, 69, 1, 55-66 (2007), ISSN: 0169-3913
[7] Malashetty, M. S.; Heera, R., The effect of rotation on the onset of double diffusive convection in a horizontal anisotropic porous layer, Transport Porous Media, 74, 1, 105-127 (2008), ISSN: 0169-3913
[8] Sunil; Sharma, A.; Bharti, P. K.; Shandil, R. G., Effect of rotation on a layer of micropolar ferromagnetic fluid heated from below saturating a porous medium, Int. J. Eng. Sci., 44, 11-12, 683-698 (2006), ISSN: 0020-7225 · Zbl 1213.76211
[9] Sunil; Mahajan, A., Thermoconvective magnetized ferrofluid with internal angular momentum saturating a porous medium: a nonlinear stability analysis, Appl. Math. Comput., 205, 1, 403-416 (2008), ISSN: 0096-3003 · Zbl 1166.76018
[10] Straughan, B., Stability and wave motion in porous media, Ser. Appl. Math. Sci., vol. 165 (2008), Springer: Springer New-York · Zbl 1149.76002
[11] B. Straughan, A sharp nonlinear stability threshold in rotating porous convection, Proc. R. Soc. London A 457 (2005) (2001) 87-93. ISSN: 1364-5021.; B. Straughan, A sharp nonlinear stability threshold in rotating porous convection, Proc. R. Soc. London A 457 (2005) (2001) 87-93. ISSN: 1364-5021. · Zbl 0984.76029
[12] Straughan, B., The energy method, stability, and nonlinear convection, Ser. Appl. Math. Sci., vol. 91 (2004), Springer: Springer New-York · Zbl 1032.76001
[13] K.R. Rajagopal, G. Saccomandi, L. Vergori, A systematic approximation for the equations governing convection diffusion in a porous medium. doi:10.1016/j.nonrwa.2009.07.010; K.R. Rajagopal, G. Saccomandi, L. Vergori, A systematic approximation for the equations governing convection diffusion in a porous medium. doi:10.1016/j.nonrwa.2009.07.010 · Zbl 1194.35336
[14] Kannan, K.; Rajagopal, K. R., Flow through porous media due to high pressure gradients, Appl. Math. Comput., 199, 2, 748-759 (2008), ISSN: 0096-3003 · Zbl 1228.76161
[15] Subramanian, S. C.; Rajagopal, K. R., A note on the flow through porous solids at high pressures, Comput. Math. Appl., 53, 2, 260-275 (2007), ISSN: 0898-1221 · Zbl 1129.76054
[16] Venkatasubramanian, S.; Kaloni, P. N., Stability and uniqueness of magnetic fluid motions, Proc. R. Soc. London A, 458, 2021, 1189-1204 (2002), ISSN: 1364-5021 · Zbl 1001.76122
[17] Hill, A. A., Double-diffusive convection in a porous medium with a concentration based internal heat source, Proc. R. Soc. London A, 461, 2054, 561-574 (2005), ISSN: 1364-5021 · Zbl 1145.76441
[18] Sunil; Mahajan, A., A nonlinear stability analysis for magnetized ferrofluid heated from below, Proc. R. Soc. London A, 464, 2089, 83-98 (2008), ISSN: 1364-5021 · Zbl 1129.76025
[19] Sunil; Mahajan, A., A nonlinear stability analysis for rotating magnetized ferrofluid heated from below, Appl. Math. Comput., 204, 1, 299-310 (2008), ISSN: 0096-3003 · Zbl 1163.76021
[20] Nield, D. A.; Bejan, A., Convection in Porous Media (2006), Springer: Springer New-York · Zbl 1256.76004
[21] Roberts, A. J., An analysis of near-marginal, mildly penetrative convection with heat flux prescribed on the boundaries, J. Fluid Mech., 158, 71-93 (1985) · Zbl 0604.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.