×

Heating of saturated porous media in practice: several causes of local thermal non-equilibrium. (English) Zbl 1177.80065

Summary: In recent years the industrial applications of porous materials has shown a growing relevance. Most of the technological thermal processes in porous media involve time-dependent thermal conditions. Therefore, the temperature at each point of the material also changes in time. In order to correctly carry out the technological process, it becomes necessary to know the temperature distribution inside the material. This is a problem of heat conduction in a fluid saturated porous media subject to a lack of local thermal equilibrium (LTNE).
The purpose of this paper is to elucidate the several causes of LTNE, even in steady or quasi steady heat transfer processes in saturated porous media, and to evaluate the influence of structural characteristic of porous media and the presence of surfactant in the saturating liquid phase.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
80-05 Experimental work for problems pertaining to classical thermodynamics
Full Text: DOI

References:

[1] International Conference on Porous Media and their Applications in Science, Engineering and Industry, Kona (Hawai), June 1996.
[2] Xu, L. X.; Liu, J.: Discussion of non-equilibrium heat transfer in biological systems, Asme htd, 13-17 (1998)
[3] Abalone, R. M.; Lara, M. A.; Gaspar, R.; Piacentivi, R. D.: Drying of biological products with significant volume variation. Experimental and modelling results for potato drying, Drying technol. 12, 629-647 (1994)
[4] Zhang, L.; Fryer, P. J.: Models for the electrical heating of solid – liquid food mixtures, Chem. eng. Sci. 48, 633-642 (1993)
[5] Jicong, P. -X.; Fau, M. H.; Si, G. -S.; Reu, Z.: Thermal hydraulic performance of small scale micro-channels and porous media heat exchanger, Int. J. Heat mass transfer 44, 1039-1051 (2001)
[6] Holland, K. G. T.; Lynkaran, K.: Analytical model for the thermal conductance of compound honeycomb transparent insulation, with experimental validation, Solar energy 51, 223-227 (1993)
[7] Heek, V. A. T.: Increasing the power of high temperature reactor module, Nucl. eng. Des. 150, 183-189 (1994)
[8] Chawla, T. C.; Pedersen, D. R.; Minkowycz, W. J.: Governing equations for heat and mass transfer in heat generating porous beds. Part I: Coolant boiling and transient void propagation, Int. J. Heat mass transfer 28, 2129-2136 (1985)
[9] Lloyd, G.; Kim, K. J.; Razurni, A.; Feldman, K. T.: Thermal conduction measurement of metal hydride compacts developed for high power reactors, J. thermophys. Heat transfer 12, No. 1, 132-137 (1998)
[10] Alkam, M. K.; Al-Nimr, M. A.; Hamdan, M. O.: Enhancing heat transfer in parallel plate channels by using porous insert, Int. J. Heat mass transfer 44, 931-938 (2001) · Zbl 1106.76444 · doi:10.1016/S0017-9310(00)00155-1
[11] Vadasz, P.: On the paradox of heat conduction in media subject to lack of local thermal equilibrium. A paradox of heat conduction in porous media subject to lack of local thermal equilibrium, Int. J. Heat mass transfer 50, 4131-4140 (2007) · Zbl 1142.80314 · doi:10.1016/j.ijheatmasstransfer.2007.03.017
[12] Nield, D. A.: Effects of local thermal nonequilibrium in steady convection processes in a saturated porous media: forced convection in a channel, J. porous media 1, 181-186 (1998) · Zbl 0920.76079
[13] Carbonell, R. G.; Whittaker, S.: Heat and mass transfer in porous media, Fundamentals of transport phenomena in porous media, 121-198 (1984)
[14] Nnanrra, A. G. Agwu; Haji-Sheikh, A.; Harris, K. T.: Experimental study of non-Fourier thermal response in porous media, J. porous media 8, No. 1, 31-44 (2005)
[15] Nield, D. A.: A note on the modelling of local thermal non-equilibrium in a structured porous medium, Int. J. Heat transfer 45, 4367-4368 (2002) · Zbl 1006.76563 · doi:10.1016/S0017-9310(02)00138-2
[16] Alazmi, B.; Vafai, K.: Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions, Int. J. Heat mass transfer 45, 3071-3087 (2002) · Zbl 1072.76669 · doi:10.1016/S0017-9310(02)00044-3
[17] Lloyd, G. M.; Rozani, A.; Kinn, K. J.: Formulation and numerical solution of non-local thermal equilibrium equations for multiple gas/solid porous metal hydride reactors, J. heat transfer 123, 520-526 (2001)
[18] Minkowycz, W. J.; Haji-Sheik, A.; Vafai, K.: On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the sparrow number, Int. J. Heat mass transfer 42, 3373-3385 (1999) · Zbl 0956.76090 · doi:10.1016/S0017-9310(99)00043-5
[19] Morini, G. L.; Spige, M.: Transient response of non-thermal equilibrium packed beds, Int. J. Eng. sci. 37, 179-188 (1999)
[20] Maiti, A.; Mahan, G. D.; Pantelides, S. T.: Dynamical simulation of nonequilibrium processes — heat flow and the Kapitza resistance across grain boundaries, Solid state commun. 102, No. 7, 517-521 (1997)
[21] Stoner, R. J.; Maris, H. J.: Kapitza conductance and heat flow between solids at temperatures from 50 to 300K, Phys. rev. B, No. 48, 16373-16387 (1993)
[22] Swartz, E. T.; Pohl, R. D.: Thermal boundary resistance, Rev. mod. Phys. 61, 605-613 (1989)
[23] Swartz, E. T.; Pohl, R. D.: Thermal boundary at interfaces, Appl. phys. Lett. 51, 2200-2202 (1987)
[24] Cahill, D. G.; Bullan, A.; Lee, S. M.: Interface thermal conductance and the thermal conductivity of multilayer thin films, High temperature high press. 32, 135-142 (2000)
[25] Thomas, J. A.; Mcgaughy, A. J. H.: Effect of surface wettability on liquid density, structure and diffusion near a solid surface, J. chem. Phys. 126 (2007)
[26] Rah, Kyunil; Eu, Byung Chan: Theory of thermal conductivity of dense simple fluids, J. chem. Phys. 115, 20 (2001) · Zbl 0972.76104
[27] Banat, J. L.; Chiaruttini, F.: Mol. phys., Mol. phys. 101, 1605 (2003)
[28] Keblinski, P.; Themin, J.: Phys. rev. E, Phys. rev. E 73 (2006)
[29] M. Carbonell, Estudio experimental del proceso de calentamiento de medios porosos saturados hasta ebullición y Dryout de la fase líquida, Ph.D. Thesis, UPC Barcelona, Spain, 1999.
[30] Cataneo, C.: A form of heat conduction equation which eliminate the paradox of instantaneous propagation, Compte rendus 247, 431-433 (1958)
[31] Vernotte, P.: LES paradoxes de Lu thèorie continue de l’equation de la chaleur, Compte rendus 246, 3154-3155 (1958) · Zbl 1341.35086
[32] Vernotte, P.: Some possible complications in the phenomena of thermal conduction, Compte rendus 252, 2190-2191 (1961)
[33] Tzon, D. Y.: Macro to microscale heat transfer. The lagging behaviour, (1997)
[34] Combarnous, M.; Bories, S. A.: Modelization de Lu convection naturelle an sein d’una couche poreuse horizontale a l’aide d’un coefficient de transfer solid-fluid, Int. J. Heat mass transfer 17, 505-515 (1974)
[35] Tzon, D. Y.; Chiu, K. K. S.; Beraun, J. E.; Chen, J. K.: Depth of thermal penetration in the fast transient process of heat transport, Asme htd, 361-364 (1998)
[36] Kakac, S.; Yener, Y.: Heat conduction, (1993)
[37] Soboleva, O. A.; Badum, G. A.; Summ, B. D.: Absorption of non-ionic surfactant triton X-100 on solid from aqueous and non-aqueous solutions, Moscow univ. Chem. bull. 62, No. 1 (2007)
[38] Parfitt, G. D.; Rochester, Ch.: Adsorption from solution at the solid/liquid interface, (1983)
[39] Ofuchi, K.; Kunii, D.: Heat transfer characteristics of packed beds with stagnated fluids, Int. J. Heat mass transfer 8, 749-757 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.