×

Diffuse interface relaxation model for two-phase compressible flows with diffusion processes. (English) Zbl 07561058

Summary: The paper addresses a two-temperature model for simulating compressible two-phase flow taking into account diffusion processes related to the heat conduction and viscosity of the phases. This model is reduced from the two-phase Baer-Nunziato model in the limit of complete velocity relaxation and consists of the phase mass and energy balance equations, the mixture momentum equation, and a transport equation for the volume fraction. Terms describing effects of mechanical relaxation, temperature relaxation, and thermal conduction on volume fraction evolution are derived and demonstrated to be significant for heat conduction problems. The thermal conduction leads to instantaneous thermal relaxation so that the temperature equilibrium is always maintained in the interface region with meeting the entropy relations. A numerical method is developed to solve the model governing equations that ensures the pressure-velocity-temperature (PVT) equilibrium condition in its high-order extension. We solve the hyperbolic part of the governing equations with the Godunov method with the HLLC approximate Riemann solver. The non-linear parabolic part is solved with an efficient Chebyshev explicit iterative method without dealing with large sparse matrices. To verify the model and numerical methods proposed, we demonstrate numerical results of several numerical tests such as the multiphase shock tube problem, the multiphase impact problem, and the planar ablative Rayleigh-Taylor instability problem.

MSC:

76Mxx Basic methods in fluid mechanics
76Txx Multiphase and multicomponent flows
76Nxx Compressible fluids and gas dynamics

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 1, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 2, 594-623 (2001) · Zbl 1033.76029
[3] Alahyari Beig, S.; Johnsen, E., Maintaining interface equilibrium conditions in compressible multiphase flows using interface capturing, J. Comput. Phys., 302, 548-566 (2015) · Zbl 1349.76423
[4] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 2, 577-616 (2002) · Zbl 1169.76407
[5] Atzeni, S.; Meyer-ter Vehn, J., The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (2004), Oxford University Press
[6] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 6, 861-889 (1986) · Zbl 0609.76114
[7] Balashov, V.; Savenkov, E., Quasi-hydrodynamic model of multiphase fluid flows taking into account phase interaction, J. Appl. Mech. Tech. Phys., 59, 3, 434-444 (2018) · Zbl 1442.76130
[8] Balashov, V.; Savenkov, E.; Zlotnik, A., Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics, Russ. J. Numer. Anal. Math. Model., 34, 1, 1-13 (2019) · Zbl 1416.76171
[9] Bilicki, Z.; Kwidziński, R.; Mohammadein, S. A., Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow, Int. J. Heat Mass Transf., 39, 4, 753-759 (1996) · Zbl 0963.76592
[10] Brouillette, M., The Richtmyer-Meshkov instability, Annu. Rev. Fluid Mech., 34, 1, 445-468 (2002) · Zbl 1047.76025
[11] Capuano, M.; Bogey, C.; Spelt, P. D.M., Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes, J. Comput. Phys., 361, 56-81 (2018) · Zbl 1391.76773
[12] Chiapolino, A., Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows (2018), Aix-Marseille Université, PhD thesis
[13] Chiapolino, A.; Saurel, R.; Nkonga, B., Sharpening diffuse interfaces with compressible fluids on unstructured meshes, J. Comput. Phys., 340, 389-417 (2017) · Zbl 1376.76068
[14] Chinnayya, A.; Daniel, E.; Saurel, R., Modelling detonation waves in heterogeneous energetic materials, J. Comput. Phys., 196, 2, 490-538 (2004) · Zbl 1109.76335
[15] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167-178 (1963) · Zbl 0113.17802
[16] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, (The Foundations of Mechanics and Thermodynamics (1974), Springer), 145-156
[17] Coralic, V.; Colonius, T., Finite-volume WENO scheme for viscous compressible multicomponent flows, J. Comput. Phys., 274, 95-121 (2014) · Zbl 1351.76100
[18] Drew, D. A., Mathematical modeling of two-phase flow, Annu. Rev. Fluid Mech., 15, 1, 261-291 (1983) · Zbl 0569.76104
[19] Drew, D. A.; Passman, S. L., Theory of Multicomponent Fluids (1999), Springer
[20] Dumbser, M., A simple two-phase method for the simulation of complex free surface flows, Comput. Methods Appl. Mech. Eng., 200, 9-12, 1204-1219 (2011) · Zbl 1225.76210
[21] Dumbser, M., A diffuse interface method for complex three-dimensional free surface flows, Comput. Methods Appl. Mech. Eng., 257, 47-64 (04 2013) · Zbl 1286.76099
[22] Dyadechko, V.; Shashkov, M., Moment-of-fluid interface reconstruction (2005), Los Alamos Report LA-UR-05-7571
[23] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 11, 5361-5384 (2008) · Zbl 1220.76048
[24] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[25] Föll, F.; Hitz, T.; Müller, C.; Munz, C. D.; Dumbser, M., On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit, Shock Waves (2019)
[26] Galina, R.; Romenski, E., Diffuse interface approach to modeling wavefields in a saturated porous medium, Appl. Math. Comput., 398, Article 125978 pp. (06 2021) · Zbl 1508.35173
[27] Gu, Y.; Gao, Z.; Hu, G.; Li, P.; Wang, L., A robust high order alternative WENO scheme for the five-equation mode, J. Sci. Comp., 88 (12 2021) · Zbl 1467.76037
[28] Gavrilyuk, S.; Saurel, R., Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys., 175, 326-360 (01 2002) · Zbl 1039.76067
[29] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K.-m.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 3, 703-727 (1998) · Zbl 0912.65075
[30] Glimm, J.; Li, X.; Liu, Y.; Xu, Z.; Zhao, N., Conservative front tracking with improved accuracy, SIAM J. Numer. Anal., 41, 5, 1926-1947 (2003) · Zbl 1053.35093
[31] H. Guillard, M. Labois, Numerical modelling of compressible two-phase flows, 2006.
[32] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 3, 227-253 (1974) · Zbl 0292.76018
[33] Holt, M., Underwater explosions, Annu. Rev. Fluid Mech., 9, 1, 187-214 (1977) · Zbl 0398.76052
[34] Johnsen, E.; Ham, F.; Larsson, J., Numerical errors generated by shock-capturing schemes in compressible multicomponent flows, (Center for Turbulence Research Annual Research Briefs (2009)), 323-334
[35] Johnsen, E.; Ham, F., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J. Comput. Phys., 231, 17, 5705-5717 (2012) · Zbl 1522.76051
[36] Kapila, A.; Menikoff, R.; Bdzil, J.; Son, S.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 10, 3002-3024 (2001) · Zbl 1184.76268
[37] Kedrinsky, V. K., Hydrodynamics of Explosion. Experiment and Models (2000), Publishing House of Siberian Branch of the Russian Academy of Sciences, (in Russian)
[38] Kemm, F.; Gaburro, E.; Thein, F.; Dumbser, M., A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer-Nunziato model, Comput. Fluids (2020) · Zbl 1519.76176
[39] Kenamond, M.; Kuzmin, D.; Shashkov, M., A positivity-preserving and conservative intersection-distribution-based remapping algorithm for staggered ale hydrodynamics on arbitrary meshes, J. Comput. Phys., 435, 12 (2021) · Zbl 07503729
[40] Kikinzon, E.; Shashkov, M.; Garimella, R., Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations, Comput. Fluids, 172 (2018) · Zbl 1410.76239
[41] Krechetnikov, R., Rayleigh-Taylor and Richtmyer-Meshkov instabilities of flat and curved interfaces, J. Fluid Mech., 625, 387-410 (2009) · Zbl 1171.76375
[42] Kreeft, J. J.; Koren, B., A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment, J. Comput. Phys., 229, 18, 6220-6242 (2010) · Zbl 1425.76216
[43] Kucharik, M.; Breil, J.; Galera, S.; Maire, P.-H.; Berndt, M.; Shashkov, M., Hybrid remap for multi-material ALE, Comput. Fluids, 46, 1, 293-297 (2011) · Zbl 1433.76133
[44] Kull, H.-J., Theory of the Rayleigh-Taylor instability, Phys. Rep., 206, 5, 197-325 (1991)
[45] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys., 95, 1, 59-84 (1991) · Zbl 0725.76090
[46] Lemartelot, S.; Saurel, R.; Nkonga, B., Towards the direct numerical simulation of nucleate boiling flows, Int. J. Multiph. Flow, 66, 7, 62-78 (2014)
[47] Li, Z.; Wang, L.; Wu, J.; Ye, W., Numerical study on the laser ablative Rayleigh-Taylor instability, Acta Mech. Sin., 1-8 (2020)
[48] Lund, H., A hierarchy of relaxation models for two-phase flow, SIAM J. Appl. Math., 72, 6, 1713-1741 (2012) · Zbl 1260.76036
[49] Masatsuka, K., I do Like CFD. VOL. 1: Governing Equations and Exact Solutions (2009), Lulu.com
[50] Zhang, Chao; Wang, Lifeng; Shen, Zhijun; Li, Zhiyuan; Menshov, Igor, A reduced model for compressible viscous heat-conducting multicomponent flows, Comput. Fluids, 236, Article 105311 pp. (2022) · Zbl 1521.76790
[51] Menshov, I.; Serezhkin, A., A generalized Rusanov method for the Baer-Nunziato equations with application to DDT processes in condensed porous explosives, Int. J. Numer. Methods Fluids, 86, 5, 346-364 (2018)
[52] Menshov, I.; Zakharov, P., On the composite Riemann problem for multi-material fluid flows, Int. J. Numer. Methods Fluids, 76, 2, 109-127 (2015) · Zbl 1455.65158
[53] Miller, S.; Jasak, H.; Boger, D.; Paterson, E.; Nedungadi, A., A pressure-based, compressible, two-phase flow finite volume method for underwater explosions, Comput. Fluids, 87, 132-143 (2013) · Zbl 1290.76088
[54] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100, 2, 209-228 (1992) · Zbl 0758.76044
[55] Müller, I.; Müller, W. H., Fundamentals of Thermodynamics and Applications: with Historical Annotations and Many Citations from Avogadro to Zermelo (2009), Springer Science & Business Media · Zbl 1168.80001
[56] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 2, 664-698 (2005) · Zbl 1061.76083
[57] Nigmatulin, R. I., Dynamics of the Multiphase Media. Part 1 (1987), Nauka, (in Russian)
[58] Osher, S.; Fedkiw, R., Level sets and dynamic implicit surfaces, Appl. Math. Sci., 153 (2002)
[59] Pelanti, M.; Shyue, K.-M., A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259, 331-357 (2014) · Zbl 1349.76851
[60] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, J. Comput. Phys., 209, 1, 139-178 (2005) · Zbl 1329.76301
[61] Petitpas, F.; Le Martelot, S., A discrete method to treat heat conduction in compressible two-phase flows, Comput. Therm. Sci., 6, 251-271 (2014)
[62] Petitpas, F.; Saurel, R.; Franquet, E.; Chinnayya, A., Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations, Shock Waves, 19, 5, 377-401 (2009) · Zbl 1255.76063
[63] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 318, 129-163 (1996) · Zbl 0877.76046
[64] Ranjan, D.; Oakley, J.; Bonazza, R., Shock-bubble interactions, Annu. Rev. Fluid Mech., 43, 1, 117-140 (2011) · Zbl 1299.76125
[65] Rinderknecht, H.; Amendt, P.; Wilks, S.; Collins, G., Kinetic physics in ICF: present understanding and future directions, Plasma Phys. Control. Fusion, 60 (03 2018)
[66] Romenski, E.; Drikakis, D., Compressible two-phase flow modelling based on thermodynamically compatible systems of hyperbolic conservation laws, Int. J. Numer. Methods Fluids, 56, 8, 1473-1479 (2010) · Zbl 1169.76041
[67] Romenski, E.; Toro, E., Compressible two-phase flows: two-pressure models and numerical methods, Comput. Fluid Dyn. J., 13 (03 2012)
[68] Romenski, E.; Resnyansky, A. D.; Toro, E. F., Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures, Q. Appl. Math., 65, 2, 259-280 (2007) · Zbl 1145.35430
[69] Romenski, E.; Drikakis, D.; Toro, E., Conservative models and numerical methods for compressible two-phase flow, J. Sci. Comput., 42, 68-95 (07 2010) · Zbl 1203.76095
[70] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 2, 425-467 (1999) · Zbl 0937.76053
[71] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 3, 1115-1145 (1999) · Zbl 0957.76057
[72] Saurel, R.; Pantano, C., Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech., 50, 105-130 (2018) · Zbl 1384.76054
[73] Saurel, R.; Gavrilyuk, S.; Renaud, F., A multiphase model with internal degrees of freedom: application to shock-bubble interaction, J. Fluid Mech., 495, 283-321 (2003) · Zbl 1080.76062
[74] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350 (2008) · Zbl 1147.76060
[75] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 5, 1678-1712 (2009) · Zbl 1409.76105
[76] Schmidmayer, K.; Petitpas, F.; Daniel, E., A model and numerical method for high speed flows with capillary, viscous and heat conduction effects, (46th AIAA Fluid Dynamics Conference (2016)), 4269
[77] Schmidmayer, K.; Petitpas, F.; Daniel, E.; Favrie, N.; Gavrilyuk, S., A model and numerical method for compressible flows with capillary effects, J. Comput. Phys., 334, 468-496 (2017) · Zbl 1375.76198
[78] Schmidmayer, K.; Bryngelson, S. H.; Colonius, T., An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics, J. Comput. Phys., 402, Article 109080 pp. (2020) · Zbl 1453.76108
[79] Sharp, D. H., Overview of Rayleigh-Taylor instability (1983), Los Alamos National Lab.: Los Alamos National Lab. NM (USA), Technical report · Zbl 0577.76047
[80] Shen, Z.; Yan, W.; Yuan, G., A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method, J. Comput. Phys., 268, 432-455 (07 2014) · Zbl 1349.76386
[81] Shen, Z.; Yan, W.; Yuan, G., A robust and contact resolving Riemann solver on unstructured mesh, Part II, ALE method, J. Comput. Phys., 268, 456-484 (07 2014) · Zbl 1349.76387
[82] Shen, Z.; Yan, W.; Yuan, G., A robust HLLC-type Riemann solver for strong shock, J. Comput. Phys., 309, 185-206 (2016) · Zbl 1351.76043
[83] Shvedov, A.; Zhukov, V. T., Explicit iterative difference schemes for parabolic equations, Russ. J. Numer. Anal. Math. Model., 13, 2, 133-148 (1998) · Zbl 0913.65075
[84] Shyue, K.-M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 1, 208-242 (1998) · Zbl 0934.76062
[85] Shyue, K.-M., A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys., 156, 1, 43-88 (1999) · Zbl 0957.76039
[86] Shyue, K. M.; Xiao, F., An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic thinc approach, J. Comput. Phys., 268, 2, 326-354 (2014) · Zbl 1349.76388
[87] Spitzer, L.; Harm, R., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, Phys. Rev., 89, 5, 977-981 (1953) · Zbl 0050.23505
[88] Tiwari, A.; Freund, J. B.; Pantano, C., A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252, C, 290-309 (2013) · Zbl 1349.76395
[89] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer · Zbl 1227.76006
[90] Wang, L. F.; Ye, W. H.; He, X. T.; Wu, J. F.; Zhang, W. Y., Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China, Phys. Mech. Astron., 060, 005, 1-35 (2017)
[91] Youngs, D. L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. D: Nonlinear Phenom., 12, 1-3, 32-44 (1984)
[92] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys., 229, 8, 2964-2998 (2010) · Zbl 1307.76079
[93] Zhang, C., Mathematical modeling of heterogeneous multi-material flows (2019), Lomonosov Moscow State University, (in Russian). PhD thesis
[94] Zhang, C.; Menshov, I., Interface-capturing method for calculating transport equations for a multicomponent heterogeneous system on fixed Eulerian grids, Math. Models Comput. Simul., 11, 6, 973-987 (2019)
[95] Zhang, C.; Menshov, I., Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows, Appl. Math. Comput., 363, Article 124610 pp. (2019) · Zbl 1433.76149
[96] Zhang, C.; Menshov, I., Eulerian modelling of compressible three-fluid flows with surface tension, Russ. J. Numer. Anal. Math. Model., 34, 4, 225-240 (2019) · Zbl 1421.76200
[97] Zhang, C.; Menshov, I., An interface-regularizing model for compressible three-fluid flows with interfacial tensions, Comput. Fluids, 210, 2, Article 104674 pp. (2020) · Zbl 1521.76496
[98] Zhang, C.; Menshov, I., Eulerian model for simulating multi-fluid flows with an arbitrary number of immiscible compressible components, J. Sci. Comput., 83, 2, 1-33 (2020) · Zbl 1434.76143
[99] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723, 1-160 (2017) · Zbl 1377.76017
[100] Zhukov, V. T., Explicit methods for the numerical integration of parabolic equations, Mat. Model., 22, 127-158 (2010) · Zbl 1224.35238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.