×

A new formulation of Kapila’s five-equation model for compressible two-fluid flow, and its numerical treatment. (English) Zbl 1425.76216

Summary: A new formulation of Kapila’s five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow is derived, together with an appropriate numerical method. The new formulation uses flow equations based on conservation laws and exchange laws only. The two fluids exchange momentum and energy, for which exchange terms are derived from physical laws. All equations are written as a single system of equations in integral form. No equation is used to describe the topology of the two-fluid flow. Relations for the Riemann invariants of the governing equations are derived, and used in the construction of an Osher-type approximate Riemann solver. A consistent finite-volume discretization of the exchange terms is proposed. The exchange terms have distinct contributions in the cell interior and at the cell faces. For the exchange-term evaluation at the cell faces, the same Riemann solver as used for the flux evaluation is exploited. Numerical results are presented for two-fluid shock-tube and shock-bubble-interaction problems, the former also for a two-fluid mixture case. All results show good resemblance with reference results.

MSC:

76N15 Gas dynamics (general theory)
76T99 Multiphase and multicomponent flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, Journal of Computational Physics, 125, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R.; Perrier, V., Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flow, SIAM Journal on Multiscale Modeling and Simulation, 5, 84-115 (2006) · Zbl 1236.76053
[3] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, Journal of Computational Physics, 181, 577-616 (2002) · Zbl 1169.76407
[4] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International Journal of Multiphase Flow, 12, 861-889 (1986) · Zbl 0609.76114
[5] Clerc, S., Numerical simulation of the homogeneous equilibrium model for two-phase flows, Journal of Computational Physics, 161, 354-375 (2000) · Zbl 0965.76051
[6] H. Guillard, M. Labois, Numerical modeling of compressible two-phase flows, in: P. Wesseling, E. Oñate, J. Périaux (Eds.), ECCOMAS CFD, 2006, <http://proceedings.fyper.com/eccomascfd2006/>; H. Guillard, M. Labois, Numerical modeling of compressible two-phase flows, in: P. Wesseling, E. Oñate, J. Périaux (Eds.), ECCOMAS CFD, 2006, <http://proceedings.fyper.com/eccomascfd2006/>
[7] Haas, J. F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, Journal of Fluid Mechanics, 181, 41-76 (1987)
[8] Hemker, P. W.; Spekreijse, S. P., Multipe grid and Osher’s scheme for the efficient solution of the steady Euler equations, Applied Numerical Mathematics, 2, 475-493 (1986) · Zbl 0612.76077
[9] Hundsdorfer, W.; Koren, B.; van Loon, M.; Verwer, J. G., A positive finite-difference advection scheme, Journal of Computational Physics, 117, 35-46 (1995) · Zbl 0860.65073
[10] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[11] Koren, B., A robust upwind discretization method for advection, diffusion and source terms, (Vreugdenhil, C. B.; Koren, B., Notes on Numerical Fluid Mechanics, vol. 45 (1993), Vieweg), 117-138 · Zbl 0805.76051
[12] Massoni, J.; Saurel, R.; Nkonga, B.; Abgrall, R., Propositions de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur, International Journal of Heat and Mass Transfer, 45, 1287-1307 (2002) · Zbl 1121.76378
[13] Mulder, W. A.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, Journal of Computational Physics, 100, 209-228 (1992) · Zbl 0758.76044
[14] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, 202, 664-698 (2005) · Zbl 1061.76083
[15] Osher, S.; Fedkiw, R. P., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer · Zbl 1026.76001
[16] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Mathematics of Computation, 38, 339-374 (1982) · Zbl 0483.65055
[17] Petitpas, F.; Franquet, E.; Saurel, R.; Le Metayer, O., A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks, Journal of Computational Physics, 225, 2214-2248 (2007) · Zbl 1183.76831
[18] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, Journal of Fluid Mechanics, 318, 129-163 (1996) · Zbl 0877.76046
[19] Romenski, E.; Resnyansky, A. D.; Toro, E. F., Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures, Quarterly of Applied Mathematics, 65, 259-279 (2007) · Zbl 1145.35430
[20] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, Journal of Computational Physics, 150, 425-467 (1999) · Zbl 0937.76053
[21] Saurel, R.; Franquet, E.; Daniel, E.; Le Metayer, O., A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, Journal of Computational Physics, 223, 822-845 (2007) · Zbl 1183.76840
[22] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, 228, 1678-1712 (2009) · Zbl 1409.76105
[23] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science (1999), Cambridge University Press · Zbl 0973.76003
[24] Stewart, H. B.; Wendroff, B., Two-phase flow: models and methods, Journal of Computational Physics, 56, 363-409 (1984) · Zbl 0596.76103
[25] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, 21, 995-1011 (1984) · Zbl 0565.65048
[26] van Brummelen, E. H.; Koren, B., A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows, Journal of Computational Physics, 185, 289-308 (2003) · Zbl 1047.76063
[27] B. van Leer, Upwind-difference methods for aerodynamic problems governed by the Euler equations, in: B.E. Engquist, S. Osher, R.C.J. Somerville (Eds.), Lectures in Applied Mathematics, vol. 22, American Mathematical Society, 1985, pp. 327-336.; B. van Leer, Upwind-difference methods for aerodynamic problems governed by the Euler equations, in: B.E. Engquist, S. Osher, R.C.J. Somerville (Eds.), Lectures in Applied Mathematics, vol. 22, American Mathematical Society, 1985, pp. 327-336. · Zbl 0582.76065
[28] J. Wackers, Surface Capturing and Multigrid for Steady Free-Surface Water Waves, Ph.D. Thesis, Delft University of Technology, 2007, <http://repository.tudelft.nl/>; J. Wackers, Surface Capturing and Multigrid for Steady Free-Surface Water Waves, Ph.D. Thesis, Delft University of Technology, 2007, <http://repository.tudelft.nl/>
[29] Waterson, N. P.; Deconinck, H., Design principles for bounded higher-order convection schemes – a unified approach, Journal of Computational Physics, 224, 182-207 (2007) · Zbl 1261.76018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.