×

An inverse potential problem for the stochastic diffusion equation with a multiplicative white noise. (English) Zbl 1529.35570

Summary: This work concerns the direct and inverse potential problems for the stochastic diffusion equation driven by a multiplicative time-dependent white noise. The direct problem is to examine the well-posedness of the stochastic diffusion equation for a given potential, while the inverse problem is to determine the potential from the expectation of the solution at a fixed observation point inside the spatial domain. The direct problem is shown to admit a unique and positive mild solution if the initial value is nonnegative. Moreover, an explicit formula is deduced to reconstruct the square of the potential, which leads to the uniqueness of the inverse problem for nonnegative potential functions. Two regularization methods are utilized to overcome the instability of the numerical differentiation in the reconstruction formula. Numerical results show that the methods are effective to reconstruct both smooth and nonsmooth potential functions.

MSC:

35R30 Inverse problems for PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
80A23 Inverse problems in thermodynamics and heat transfer

References:

[1] S. J. Avdonin Bell, Determining a distributed parameter in a neural cable model via a boundary control method, J. Math. Biol., 67, 123-141 (2013) · Zbl 1264.92011 · doi:10.1007/s00285-012-0537-6
[2] A. V. K. Boumenir Tuan, Reconstruction of the coefficients of a star graph from observations of its vertices, Inverse Probl. Imaging, 12, 1293-1308 (2018) · Zbl 1403.35324 · doi:10.3934/ipi.2018054
[3] J. R. Y. S. Cannon Lin Xu, Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations, Inverse Problems, 10, 227-243 (1994) · Zbl 0805.65133
[4] B. O. Canuto Kavian, Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32, 963-986 (2001) · Zbl 0981.35096 · doi:10.1137/S003614109936525X
[5] J. J. M. T. Cheng Nakagawa Yamamoto Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems, 25, 115002 (2009) · Zbl 1181.35322 · doi:10.1088/0266-5611/25/11/115002
[6] L. F. T. Eldén Berntsson Regińska, Wavelet and Fourier methods for solving the sideways heat equation, SIAM J. Sci. Comput., 21, 2187-2205 (2000) · Zbl 0959.65107 · doi:10.1137/S1064827597331394
[7] L. C. Evans, Partial Differential Equations, \(2^{nd}\) edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[8] L. C. Evans, An Introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI, 2013. · Zbl 1416.60002
[9] X. P. X. Feng Li Wang, An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion, Inverse Problems, 36, 045008 (2020) · Zbl 1469.35251 · doi:10.1088/1361-6420/ab6503
[10] P. Y. Gaitan Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29, 065006 (2013) · Zbl 1276.35097 · doi:10.1088/0266-5611/29/6/065006
[11] Y. P. X. X. Gong Li Wang Xu, Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift, Inverse Problems, 37, 045001 (2021) · Zbl 1475.35432 · doi:10.1088/1361-6420/abe6f0
[12] I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise, Ⅱ, Potential Anal., 11, 1-37 (1999) · doi:10.1023/A:1008699504438
[13] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998. · Zbl 0908.35134
[14] S. T. Jiang Wei, Recovering a time-dependent potential function in a time fractional diffusion equation by using a nonlinear condition, Inverse Probl. Sci. Eng., 29, 174-195 (2021) · Zbl 1470.65159 · doi:10.1080/17415977.2020.1782399
[15] B. Z. Jin Zhou, An inverse potential problem for subdiffusion: stability and reconstruction, Inverse Problems, 37, 015006 (2021) · Zbl 1458.35477 · doi:10.1088/1361-6420/abb61e
[16] B. S. Jovanović and E. Süli, Analysis of Finite Difference Schemes. For Linear Partial Differential Equations with Generalized Solutions, Springer Ser. Comput. Math., 46 Springer, London, 2014. · Zbl 1335.65071
[17] B. W. Kaltenbacher Rundell, On an inverse potential problem for a fractional reaction-diffusion equation, Inverse Problems, 35, 065004 (2019) · Zbl 1461.35233 · doi:10.1088/1361-6420/ab109e
[18] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, \(2^{nd}\) edition, Grad. Texts in Math., 113 Springer-Verlag, New York, 1991. · Zbl 0734.60060
[19] Y. L. E. M. Kian Oksanen Soccorsi Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differential Equations, 264, 1146-1170 (2018) · Zbl 1376.35099 · doi:10.1016/j.jde.2017.09.032
[20] G. D. X. M. Li Zhang Jia Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Problems, 29, 065014 (2013) · Zbl 1281.65125 · doi:10.1088/0266-5611/29/6/065014
[21] D. C. Liu Yang, Recovery of the heat equation on a star graph, Mediterr. J. Math., 18, 1-15 (2021) · Zbl 1477.35314 · doi:10.1007/s00009-021-01881-8
[22] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. · Zbl 1361.60002
[23] Q. Lü, Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems, Inverse Problems, 28, 045008 (2012) · Zbl 1236.35213 · doi:10.1088/0266-5611/28/4/045008
[24] P. T. Z. Niu Helin Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36, 045002 (2020) · Zbl 1469.35259 · doi:10.1088/1361-6420/ab532c
[25] Y. J. Z. J. Ou Zhao Liu Tang, Determination of the unknown time dependent coefficient \(p(t)\) in the parabolic equation \(u_t = \Delta u+p(t)u+\phi(x, t)\), J. Inverse Ill-Posed Probl., 19, 525-531 (2011) · Zbl 1279.35061 · doi:10.1515/JIIP.2011.042
[26] Z. C. X. Qian Fu Feng, A modified method for high order numerical derivatives, Appl. Math. Comput., 182, 1191-1200 (2006) · Zbl 1109.65024 · doi:10.1016/j.amc.2006.04.059
[27] Z. C. X. T. Qian Fu Xiong Wei, Fourier truncation method for high order numerical derivatives, Appl. Math. Comput., 181, 940-948 (2006) · Zbl 1103.65023 · doi:10.1016/j.amc.2006.01.057
[28] Z. Q. W. Ruan Hu Zhang, Identification of a time-dependent control parameter for a stochastic diffusion equation, Comput. Appl. Math., 40, 1-21 (2021) · Zbl 1476.65190 · doi:10.1007/s40314-021-01598-0
[29] W. Rundell, The determination of a parabolic equation from initial and final data, Proc. Amer. Math. Soc., 99, 637-642 (1987) · Zbl 0644.35093 · doi:10.2307/2046467
[30] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, \(2^{nd}\) edition, Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 2006. · Zbl 1105.65102
[31] G. Yuan, Conditional stability in determination of initial data for stochastic parabolic equations, Inverse Problems, 33, 035014 (2017) · Zbl 1372.35374 · doi:10.1088/1361-6420/aa5d7a
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.