×

Global uniqueness in an inverse problem for time fractional diffusion equations. (English) Zbl 1376.35099

This paper deals with the study of an initial boundary value problem with non-homogeneous Dirichlet data and driven by the weighted Laplace-Beltrami differential operator. The main results of this paper establish uniqueness properties for two inverse problems associated to the initial boundary value problem. These theorems correspond to known compact subsets of the Euclidean space, respectively to an unknown Riemannian manifold to be determined. The first setting is not contained in the second one. However, in the second case, the manifold and all the other unknown coefficients are assumed to be smooth, while in the first case the regularity assumptions are relaxed considerably. The proofs combine several tools, including the unique continuation principle for analytic functions, the spectral Hassell-Tao inequality, the normal derivative representation formula, and arguments on holomorphic functions.

MSC:

35R30 Inverse problems for PDEs
35R11 Fractional partial differential equations
58J99 Partial differential equations on manifolds; differential operators

References:

[1] Adams, E. E.; Gelhar, L. W., Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis, J. Water Resour., 28, 3293-3307 (1992)
[2] Bardos, C.; Lebeau, G.; Rauch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30, 1024-1065 (1992) · Zbl 0786.93009
[3] Agarwal, O. P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29, 145-155 (2002) · Zbl 1009.65085
[4] Beckers, S.; Yamamoto, M., Regularity and uniqueness of solution to linear diffusion equation with multiple time-fractional derivatives, Internat. Ser. Numer. Math., 164, 45-55 (2013) · Zbl 1273.35289
[5] Belishev, M., An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297, 524-527 (1987)
[6] Belishev, M.; Kurylev, Y., To the reconstruction of a Riemannian manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17, 767-804 (1992) · Zbl 0812.58094
[7] Bellassoued, M.; Choulli, M.; Yamamoto, M., Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Differential Equations, 247, 2, 465-494 (2009) · Zbl 1171.35123
[8] Bellassoued, M.; Dos Santos Ferreira, D., Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, Inverse Probl. Imaging, 5, 4, 745-773 (2011) · Zbl 1250.58012
[9] Bellassoued, M.; Jellali, D.; Yamamoto, M., Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85, 1219-1243 (2006) · Zbl 1110.35098
[10] Ben Aicha, I., Stability estimate for hyperbolic inverse problem with time dependent coefficient, Inverse Probl., 31, Article 125010 pp. (2015) · Zbl 1330.35523
[11] Bukhgeim, A. L.; Klibanov, M. V., Global uniqueness of class of multidimensional inverse problems, Sov. Math., Dokl., 24, 244-247 (1981) · Zbl 0497.35082
[12] Carcione, J.; Sanchez-Sesma, F.; Luzón, F.; Perez Gavilán, J., Theory and simulation of time-fractional fluid diffusion in porous media, J. Phys. A: Math. Theor., 46, Article 345501 pp. (2013), (23pp) · Zbl 1396.76085
[13] Canuto, B.; Kavian, O., Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32, 5, 963-986 (2001) · Zbl 0981.35096
[14] Canuto, B.; Kavian, O., Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result, Bolletino Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7, 1, 207-230 (2004) · Zbl 1178.35152
[15] Cheng, M.; Nakagawa, J.; Yamamoto, M.; Yamazaki, T., Uniqueness in an inverse problem for a one dimensional fractional diffusion equation, Inverse Probl., 25, Article 115002 pp. (2009) · Zbl 1181.35322
[16] Cheng, J.; Xiang, X.; Yamamoto, M., Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90, 9, 1355-1371 (2011) · Zbl 1236.35199
[17] Choulli, M., Une introduction aux problèmes inverses elliptiques et paraboliques, Math. Appl., vol. 65 (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1192.35187
[18] Choulli, M.; Kian, Y., Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3, 2, 143-160 (2013) · Zbl 1259.35221
[19] Choulli, M.; Stefanov, P., Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Comm. Partial Differential Equations, 38, 3, 455-476 (2013) · Zbl 1302.35433
[20] Choulli, M.; Yamamoto, M., Some stability estimates in determining sources and coefficients, J. Inverse Ill-Posed Probl., 14, 4, 355-373 (2006) · Zbl 1110.35100
[21] Cristofol, M.; Li, S.; Soccorsi, E., Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary, Math. Control Relat. Fields, 6, 407-427 (2016) · Zbl 1348.35314
[22] Fujishiro, K.; Kian, Y., Determination of time dependent factors of coefficients in fractional diffusion equations, Math. Control Relat. Fields, 6, 251-269 (2016) · Zbl 1348.35317
[23] Gaitan, P.; Kian, Y., A stability result for a time-dependent potential in a cylindrical domain, Inverse Probl., 29, 6, Article 065006 pp. (2013) · Zbl 1276.35097
[24] Grisvard, P., Elliptic Problems in Nonsmooth Domains (1985), Pitman: Pitman London · Zbl 0695.35060
[25] Gorenflo, R.; Luchko, Y.; Yamamoto, M., Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal., 18, 799-820 (2015) · Zbl 1499.35642
[26] Gorenflo, R.; Mainardi, F., Fractional diffusion processes: probability distributions and continuous time random walk, (Rangarajan, G.; Ding, M., Processes with Long Range Correlations. Processes with Long Range Correlations, Lecture Notes in Phys., vol. 621 (2003), Springer: Springer Berlin), 148-166
[27] Gosh, T.; Salo, M.; Uhlmann, G., The Calderón problem for the fractional Schrödinger equation, preprint · Zbl 1439.35530
[28] Hassell, A.; Tao, T., Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions, Math. Res. Lett., 9, 289-305 (2002) · Zbl 1014.58015
[29] Hatano, Y.; Nakagawa, J.; Wang, S.; Yamamoto, M., Determination of order in fractional diffusion equation, J. Math-for-Ind., 5A, 51-57 (2013) · Zbl 1446.35247
[30] Isozaki, H., Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31, 3, 743-753 (1991) · Zbl 0753.35121
[31] Jin, B.; Rundell, W., A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl., 31, Article 035003 pp. (2015) · Zbl 1323.34027
[32] Katchalov, A.; Kurylev, Y., Multidimensional inverse problem with incomplete boundary spectral data, Comm. Partial Differential Equations, 23, 55-95 (1998) · Zbl 0904.65114
[33] Katchalov, A.; Kurylev, Y.; Lassas, M., Inverse Boundary Spectral Problems, 123 (2001), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL, xx+290 · Zbl 1037.35098
[34] Katchalov, A.; Kurylev, Y.; Lassas, M., Equivalence of time-domain inverse problems and boundary spectral problem, Inverse Probl., 20, 419-436 (2004) · Zbl 1073.35209
[35] Kavian, O.; Kian, Y.; Soccorsi, E., Uniqueness and stability results for an inverse spectral problem in a periodic waveguide, J. Math. Pures Appl., 104, 1160-1189 (2015) · Zbl 1335.35300
[36] Kian, Y., Stability of the determination of a coefficient for the wave equation in an infinite waveguide, Inverse Probl. Imaging, 8, 3, 713-732 (2014) · Zbl 1432.35256
[37] Kian, Y., A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, J. Spectr. Theory (2017), in press
[38] Kian, Y.; Yamamoto, M., On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20, 1, 117-138 (2017) · Zbl 1362.35323
[39] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[40] Kurylev, Y., Multidimensional inverse boundary problems by the BC-method: groups of transformations and uniqueness results, Math. Comput. Modelling, 18, 33-46 (1993) · Zbl 0818.35138
[41] Kurylev, Y.; Lassas, M.; Weder, R., Multidimensional Borg-Levinson theorem, Inverse Probl., 21, 1685-1697 (2005) · Zbl 1086.35140
[42] Lassas, M.; Oksanen, L., An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Probl., 26, Article 085012 pp. (2010) · Zbl 1197.35323
[43] Lassas, M.; Oksanen, L., Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., 163, 6, 1071-1103 (2014) · Zbl 1375.35634
[44] Lassas, M.; Oksanen, L., Local reconstruction of a Riemannian manifold from a restriction of the hyperbolic Dirichlet-to-Neumann operator, (Stefanov, P.; Vasy, A.; Zworski, M., Inverse Problems and Applications. Inverse Problems and Applications, Contemp. Math., vol. 615 (2014)), 223-233 · Zbl 1330.35536
[45] Li, Z.; Imanuvilov, O. Yu.; Yamamoto, M., Uniqueness in inverse boundary value problems for fractional diffusion equations, Inverse Probl., 32, Article 015004 pp. (2016) · Zbl 1332.35396
[46] Lions, J.-L.; Magenès, E., Problèmes aux limites non homogènes et applications, vol. 1 (1968), Dunod: Dunod Paris · Zbl 0165.10801
[47] Liu, S.; Oksanen, L., A Lipschitz stable reconstruction formula for the inverse problem for the wave equation, Trans. Amer. Math. Soc., 368, 319-335 (2016) · Zbl 1329.35355
[48] Liu, Y.; Rundell, W.; Yamamoto, M., Strong maximum principle for fractional diffusion equations and an application to an inverse source problem, Fract. Calc. Appl. Anal., 19, 888-906 (2016) · Zbl 1346.35216
[49] Luchko, Y., Initial-boundary value problems for the generalized time-fractional diffusion equation, (Proceedings of 3rd IFAC Workshop on Fractional Differentiation and Its Applications (FDA08). Proceedings of 3rd IFAC Workshop on Fractional Differentiation and Its Applications (FDA08), Ankara, Turkey, 05-07 November 2008 (2008))
[50] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[51] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), Wiley · Zbl 0789.26002
[52] Miller, L.; Yamamoto, M., Coefficient inverse problem for a fractional diffusion equation, Inverse Probl., 29, Article 075013 pp. (2013), (8pp) · Zbl 1278.35268
[53] Montalto, C., Stable determination of a simple metric, a co-vector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Comm. Partial Differential Equations, 39, 120-145 (2014) · Zbl 1302.35234
[54] Nachman, A.; Sylvester, J.; Uhlmann, G., An \(n\)-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115, 4, 595-605 (1988) · Zbl 0644.35095
[55] Roman, H. E.; Alemany, P. A., Continuous-time random walks and the fractional diffusion equation, J. Phys. A, 27, 3407-3410 (1994) · Zbl 0827.60057
[56] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447 (2011) · Zbl 1219.35367
[57] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Philadelphia · Zbl 0818.26003
[58] Stefanov, P.; Uhlmann, G., Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154, 330-358 (1998) · Zbl 0915.35066
[59] Stefanov, P.; Uhlmann, G., Stable determination of the hyperbolic Dirichlet-to-Neumann map for generic simple metrics, Int. Math. Res. Not. IMRN, 17, 1047-1061 (2005) · Zbl 1088.53027
[60] Stefanov, P.; Uhlmann, G., Recovery of a source term or a speed with one measurement and applications, Trans. Amer. Math. Soc., 365, 11, 5737-5758 (2013) · Zbl 1302.35453
[61] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[62] Yamamoto, M.; Zhang, Y., Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate, Inverse Probl., 28, 10, Article 105010 pp. (2012), (10 pp) · Zbl 1256.35195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.