×

An inverse potential problem for subdiffusion: stability and reconstruction. (English) Zbl 1458.35477

Summary: In this work, we study the inverse problem of recovering a potential coefficient in the subdiffusion model, which involves a Djrbashian-Caputo derivative of order \(\alpha\in (0,1)\) in time, from the terminal data. We prove that the inverse problem is locally Lipschitz for small terminal time, under certain conditions on the initial data. This result extends the result in [6] for the standard parabolic case to the fractional case. The analysis relies on refined properties of two-parameter Mittag-Leffler functions, e.g., complete monotonicity and asymptotics. Further, we develop an efficient and easy-to-implement algorithm for numerically recovering the coefficient based on (preconditioned) fixed point iteration and Anderson acceleration. The efficiency and accuracy of the algorithm is illustrated with several numerical examples.

MSC:

35R30 Inverse problems for PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35R11 Fractional partial differential equations

Software:

Anderson

References:

[1] Adams R A and Fournier J J F 2003 Sobolev Spaces 2nd edn (Amsterdam: Elsevier/Academic) · Zbl 1098.46001
[2] Anderson D G 1965 Iterative procedures for nonlinear integral equations J. ACM12 547-60 · Zbl 0149.11503 · doi:10.1145/321296.321305
[3] Brezinski C, Redivo-Zaglia M and Saad Y 2018 Shanks sequence transformations and Anderson acceleration SIAM Rev.60 646-69 · Zbl 1395.65001 · doi:10.1137/17m1120725
[4] Cheng J, Nakagawa J, Yamamoto M and Yamazaki T 2009 Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation Inverse Problems25 115002 · Zbl 1181.35322 · doi:10.1088/0266-5611/25/11/115002
[5] Choulli M and Yamamoto M 1996 Generic well-posedness of an inverse parabolic problem - the Hölder-space approach Inverse Problems12 195-205 · Zbl 0851.35133 · doi:10.1088/0266-5611/12/3/002
[6] Choulli M and Yamamoto M 1997 An inverse parabolic problem with non-zero initial condition Inverse Problems13 19-27 · Zbl 0867.35112 · doi:10.1088/0266-5611/13/1/003
[7] Ciarlet P G 2013 Linear and Nonlinear Functional Analysis with Applications (Philadelphia, PA: SIAM) · Zbl 1293.46001
[8] Courant R and Hilbert D 1953 Methods of Mathematical Physics vol 1 (New York: Interscience) · Zbl 0053.02805
[9] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer) · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
[10] Evans C, Pollock S, Rebholz L G and Xiao M 2020 A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically) SIAM J. Numer. Anal.58 788-810 · Zbl 1433.65102 · doi:10.1137/19m1245384
[11] Hatano Y and Hatano N 1998 Dispersive transport of ions in column experiments: an explanation of long-tailed profiles Water Resour. Res.34 1027-33 · doi:10.1029/98wr00214
[12] Henry B I, Langlands T A M and Wearne S L 2006 Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations Phys. Rev. E 74 031116 · doi:10.1103/physreve.74.031116
[13] Isakov V 1991 Inverse parabolic problems with the final overdetermination Commun. Pure Appl. Math.44 185-209 · Zbl 0729.35146 · doi:10.1002/cpa.3160440203
[14] Ito K and Jin B 2015 Inverse Problems: Tikhonov Theory and Algorithms (Singapore: World Scientific) · Zbl 1306.65210
[15] Jin B, Lazarov R and Zhou Z 2016 Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data SIAM J. Sci. Comput.38 A146-70 · Zbl 1381.65082 · doi:10.1137/140979563
[16] Jin B, Lazarov R and Zhou Z 2019 Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview Comput. Methods Appl. Mech. Eng.346 332-58 · Zbl 1440.65138 · doi:10.1016/j.cma.2018.12.011
[17] Jin B, Li B and Zhou Z 2018 Numerical analysis of nonlinear subdiffusion equations SIAM J. Numer. Anal.56 1-23 · Zbl 1422.65228 · doi:10.1137/16m1089320
[18] Jin B and Rundell W 2012 An inverse problem for a one-dimensional time-fractional diffusion problem Inverse Problems28 075010 · Zbl 1247.35203 · doi:10.1088/0266-5611/28/7/075010
[19] Jin B and Rundell W 2015 A tutorial on inverse problems for anomalous diffusion processes Inverse Problems31 035003 · Zbl 1323.34027 · doi:10.1088/0266-5611/31/3/035003
[20] Kaltenbacher B and Rundell W 2019 On an inverse potential problem for a fractional reaction-diffusion equation Inverse Problems35 065004 · Zbl 1461.35233 · doi:10.1088/1361-6420/ab109e
[21] Kian Y and Yamamoto M 2019 Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations Inverse Problems35 115006 · Zbl 1427.35360 · doi:10.1088/1361-6420/ab2d42
[22] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations(North-Holland Mathematics Studies vol 204) (Amsterdam: Elsevier) · Zbl 1092.45003
[23] Klibanov M V, Li J and Zhang W 2020 Convexification for an inverse parabolic problem arXiv:2001.01880
[24] Krasnoschok M V 2016 Solvability in holder space of an initial boundary value problem for the time-fractional diffusion Z. Mat. Fiz. Anal. Geom.12 48-77 · Zbl 1360.35034 · doi:10.15407/mag12.01.048
[25] Li Z, Cheng X and Liu Y 2020 Generic well-posedness for an inverse source problem for a multi-term time-fractional diffusion equation Taiwan. J. Math.24 1005-20 · Zbl 1461.35236 · doi:10.11650/tjm/191103
[26] Liu Y, Li Z and Yamamoto M 2019 Inverse problems of determining sources of the fractional partial differential equations Handbook of Fractional Calculus with Applications vol 2 (Berlin: de Gruyter & Co) pp 411-29 · Zbl 1410.26004
[27] Liu Y, Rundell W and Yamamoto M 2016 Strong maximum principle for fractional diffusion equations and an application to an inverse source problem Fract. Calc. Appl. Anal.19 888-906 · Zbl 1346.35216 · doi:10.1515/fca-2016-0048
[28] Luchko Y and Yamamoto M 2017 On the maximum principle for a time-fractional diffusion equation Fract. Calc. Appl. Anal.20 1131-45 · Zbl 1374.35426 · doi:10.1515/fca-2017-0060
[29] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep.339 77 · Zbl 0984.82032 · doi:10.1016/s0370-1573(00)00070-3
[30] Miller L and Yamamoto M 2013 Coefficient inverse problem for a fractional diffusion equation Inverse Problems29 075013 · Zbl 1278.35268 · doi:10.1088/0266-5611/29/7/075013
[31] Nigmatulin R R 1986 The realization of the generalized transfer equation in a medium with fractal geometry Phys. Status Solidi B 133 425-30 · doi:10.1002/pssb.2221330150
[32] Pollard H 1948 The completely monotonic character of the Mittag-Leffler function Ea(−x) Bull. Am. Math. Soc.54 1115-7 · Zbl 0033.35902 · doi:10.1090/s0002-9904-1948-09132-7
[33] Prilepko A I and Solov′ev V V 1987 On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equation Differentsial′ nye Uravneniya23 136-43 · Zbl 0661.35082
[34] Rundell W 1987 The determination of a parabolic equation from initial and final data Proc. Am. Math. Soc.99 637 · Zbl 0644.35093 · doi:10.1090/s0002-9939-1987-0877031-4
[35] Sakamoto K and Yamamoto M 2011 Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems J. Math. Anal. Appl.382 426-47 · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[36] Sakamoto K, Yamamoto M and Yamamoto M 2011 Inverse source problem with a final overdetermination for a fractional diffusion equation Math. Contr. Relat. Field.1 509-18 · Zbl 1241.35220 · doi:10.3934/mcrf.2011.1.509
[37] Seybold H and Hilfer R 2008/09 Numerical algorithm for calculating the generalized Mittag-Leffler function SIAM J. Numer. Anal.47 69-88 · Zbl 1190.65033 · doi:10.1137/070700280
[38] Simon T 2014 Comparing Fréchet and positive stable laws Electron. J. Probab.19 25 · Zbl 1288.60018 · doi:10.1214/ejp.v19-3058
[39] Toth A and Kelley C T 2015 Convergence analysis for Anderson acceleration SIAM J. Numer. Anal.53 805-19 · Zbl 1312.65083 · doi:10.1137/130919398
[40] Walker H F and Ni P 2011 Anderson acceleration for fixed-point iterations SIAM J. Numer. Anal.49 1715-35 · Zbl 1254.65067 · doi:10.1137/10078356x
[41] Yuste S B, Abad E and Lindenberg K 2010 Reaction-subdiffusion model of morphogen gradient formation Phys. Rev. E 82 061123 · doi:10.1103/physreve.82.061123
[42] Zhang Z and Zhou Z 2017 Recovering the potential term in a fractional diffusion equation IMA J. Appl. Math.82 579-600 · Zbl 1405.65112 · doi:10.1093/imamat/hxx004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.