×

Skew localizer and \(\mathbb{Z}_2\)-flows for real index pairings. (English) Zbl 1477.19006

Index theorems for \(\mathbb{Z}_{2}\)-invariants have been studied by various researchers. There are 16 types secondary \(\mathbb{Z}_{2}\)-valued index pairings. In this paper under review, the authors study a systematic approach to computing \(\mathbb{Z}_{2}\)-valued index pairings and constructs the so-called skew localizer in the all 16 cases. More precisely, the first result in the paper is the index formulas for \(\mathbb{Z}_{2}\)-valued index pairings by using either an orientation flow or a half-spectral flow. The second result is constructing the skew localizer for a pairing stemming from an unbounded Fredholm module and calculating the \(\mathbb{Z}_{2}\)-valued index by using the sign of the Pfaffian and that of the determinant of the skew localizer.
The two main results for one of the 16 cases are provided in Section 1. Section 1 also contains a concrete application to the Kitaev chain, which is an example of a one-dimensional topological insulators.

MSC:

19K56 Index theory
58J30 Spectral flows
46L80 \(K\)-theory and operator algebras (including cyclic theory)

References:

[1] Atiyah, M. F.; Singer, I. M., Index theory for skew-adjoint Fredholm operators, Publ. Math. IHES, 37, 5-26 (1969) · Zbl 0194.55503
[2] Atiyah, M. F.; Singer, I. M., The index of elliptic operators: V, Ann. Math., 93, 139-149 (1971) · Zbl 0212.28603
[3] Avron, J.; Seiler, R.; Simon, B., The index of a pair of projections, J. Funct. Anal., 120, 220-237 (1994) · Zbl 0822.47033
[4] Bourne, C.; Carey, A. L.; Lesch, M.; Rennie, A., The KO-valued spectral flow for skew-adjoint Fredholm operators, J. Topol. Anal. (2021), online first
[5] Carey, A. L.; O’Brien, D. M., Automorphisms of the infinite dimensional Clifford algebra and the Atiyah-Singer mod 2 index, Topology, 22, 437-448 (1983) · Zbl 0532.47011
[6] Carey, A. L.; Phillips, J.; Schulz-Baldes, H., Spectral flow for skew-adjoint Fredholm operators, J. Spectr. Theory, 9, 137-170 (2019) · Zbl 1472.58017
[7] Connes, A., Noncommutative geometry and reality, J. Math. Phys., 36, 6194-6231 (1995) · Zbl 0871.58008
[8] Cornean, H. D.; Monaco, D.; Teufel, S., Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators, Rev. Math. Phys., 29, Article 1730001 pp. (2017) · Zbl 1370.81081
[9] De Nittis, G.; Schulz-Baldes, H., Spectral flows of dilations of Fredholm operators, Can. Math. Bull., 58, 51-68 (2015) · Zbl 1354.19004
[10] Doll, N.; Schulz-Baldes, H., Approximate symmetries and conservation laws in topological insulators and associated \(\mathbb{Z} \)-invariants, Ann. Phys., 419, Article 168238 pp. (2020) · Zbl 1448.81493
[11] Doll, N.; Schulz-Baldes, H.; Waterstraat, N., Parity as \(\mathbb{Z}_2\)-valued spectral flow, Bull. Lond. Math. Soc., 51, 836-852 (2019) · Zbl 1512.47021
[12] Gracia-Bondía, J. M.; Várilly, J. C.; Figueroa, H., Elements of Noncommutative Geometry (2001), Birkhäuser: Birkhäuser Boston · Zbl 0958.46039
[13] Grossmann, J.; Schulz-Baldes, H., Index pairings in presence of symmetries with applications to topological insulators, Commun. Math. Phys., 343, 477-513 (2016) · Zbl 1348.82083
[14] Higson, N.; Roe, J., Analytic K-Homology (2000), Oxford University Press: Oxford University Press Oxford · Zbl 0968.46058
[15] Kato, T., Perturbation Theory for Linear Operators (2012), Springer: Springer New York
[16] Kellendonk, J., Cyclic cohomology for graded \(C^{\ast , r}\)-algebras and its pairings with van Daele K-theory, Commun. Math. Phys., 368, 467-518 (2019) · Zbl 1425.46051
[17] Katsura, H.; Koma, T., The \(\mathbb{Z}_2\) index of disordered topological insulators with time reversal symmetry, J. Math. Phys., 57, Article 021903 pp. (2016) · Zbl 1341.82043
[18] Lesch, M., The Uniqueness of the Spectral Flow on Spaces of Unbounded Self-Adjoint Fredholm Operators, Contemporary Mathematics, vol. 366, 193-224 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 1085.58019
[19] Loring, T., K-theory and pseudospectra for topological insulators, Ann. Phys., 356, 383-416 (2015) · Zbl 1343.46063
[20] Loring, T.; Schulz-Baldes, H., Finite volume calculation of K-theory invariants, N.Y. J. Math., 22, 1111-1140 (2017) · Zbl 1384.46048
[21] Loring, T.; Schulz-Baldes, H., The spectral localizer for even index pairings, J. Noncommut. Geom., 14, 1-23 (2020) · Zbl 1441.19011
[22] Loring, T.; Schulz-Baldes, H., Spectral flow argument localizing an odd index pairing, Can. Math. Bull., 62, 373-381 (2018) · Zbl 1410.19002
[23] Lozano Viesca, E.; Schober, J.; Schulz-Baldes, H., Chern numbers as half-signature of the spectral localizer, J. Math. Phys., 60, Article 072101 pp. (2019) · Zbl 1421.82040
[24] Phillips, J., Self-adjoint Fredholm operators and spectral flow, Can. Math. Bull., 39, 460-467 (1996) · Zbl 0878.19001
[25] Phillips, J., Spectral flow in type I and type II factors-a new approach, Fields Inst. Commun., 17, 137-153 (1997) · Zbl 0891.46044
[26] Prodan, E.; Schulz-Baldes, H., Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics (2016), Springer Int. Pub.: Springer Int. Pub. Cham, Switzerland · Zbl 1342.82002
[27] Schulz-Baldes, H., \( \mathbb{Z}_2\)-indices and factorization properties of odd symmetric Fredholm operators, Dok. Math., 20, 1481-1500 (2015) · Zbl 1341.47014
[28] Schulz-Baldes, H.; Stoiber, T., The spectral localizer for semifinite spectral triples, Proc. Am. Math. Soc., 149, 121-134 (2021) · Zbl 1460.19007
[29] Zhang, W. P., Lectures on Chern-Weil Theory and Witten Deformations (2001), World Scientific: World Scientific Singapore · Zbl 0993.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.