×

The spectral localizer for semifinite spectral triples. (English) Zbl 1460.19007

As mentioned in the abstract, the notion of spectral localizers is extended to pairings with semifinite spectral triples. By the spectral flow argument, the index pairing of semifinite is shown to be equal of the signature of the spectral localizer. As an application, derived is the formula for weak invariants of topological insulators, providing a new approach in numerical evaluation.
Table of Contents: 1. Overview 2. Semifinite spectral flow and Signature 3. Spectral localizer 4. Constancy of the signature 5. Proof of the odd index formula 6. Proof of the even indenx formula 7. Application to topological insulators References
Reviewer’s remark: A semifinite spectral triple means a tuple \((N, A, D)\) of a semifinite von Neumann algebra \(N\) with a semifinite faithful normal trace, a star subalgebra \(A\) of \(N\), and a self-adjoint operator \(D\) affiliated to \(N\), these which satisfy a few of differential and spectral conditions. The triple is even if there is a self-adjoint unitary to make the \(2\) by \(2\) matrix argument like a spin, and odd otherwise. For an odd semifinite spectral triple, by doubling, the spectral localizer is defined to be a \(2\times 2\) matrix with \(k D\) and \(-kD\) on the diagonal and \(a\) and \(a^*\) on the off diagonal for \(k\) positive and \(a\in A^{\sim}\) as an operator affiliated to \(N\) tensored with the matrix algebra \(M_2(\mathbb C)\). In the even case, it is within \(N\) plus \(D\).

MSC:

19K56 Index theory
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46L87 Noncommutative differential geometry
46L57 Derivations, dissipations and positive semigroups in \(C^*\)-algebras
46L60 Applications of selfadjoint operator algebras to physics
47A53 (Semi-) Fredholm operators; index theories
47A10 Spectrum, resolvent
47B47 Commutators, derivations, elementary operators, etc.
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] Benameur, Moulay-Tahar; Carey, Alan L.; Phillips, John; Rennie, Adam; Sukochev, Fyodor A.; Wojciechowski, Krzysztof P., An analytic approach to spectral flow in von Neumann algebras. Analysis, geometry and topology of elliptic operators, 297-352 (2006), World Sci. Publ., Hackensack, NJ · Zbl 1119.58016
[2] Bourne, Chris; Prodan, Emil, Non-commutative Chern numbers for generic aperiodic discrete systems, J. Phys. A, 51, 23, 235202, 38 pp. (2018) · Zbl 1397.82052 · doi:10.1088/1751-8121/aac093
[3] Bourne, Chris; Schulz-Baldes, Hermann, Application of semifinite index theory to weak topological phases. 2016 MATRIX annals, MATRIX Book Ser. 1, 203-227 (2018), Springer, Cham · Zbl 1442.19016
[4] Breuer, Manfred, Fredholm theories in von Neumann algebras. I, Math. Ann., 178, 243-254 (1968) · Zbl 0162.18701 · doi:10.1007/BF01350663
[5] Carey, A. L.; Gayral, V.; Phillips, J.; Rennie, A.; Sukochev, F. A., Spectral flow for nonunital spectral triples, Canad. J. Math., 67, 4, 759-794 (2015) · Zbl 1365.46065 · doi:10.4153/CJM-2014-042-x
[6] Carey, A. L.; Gayral, V.; Rennie, A.; Sukochev, F. A., Index theory for locally compact noncommutative geometries, Mem. Amer. Math. Soc., 231, 1085, vi+130 pp. (2014) · Zbl 1314.46081
[7] Carey, Alan; Phillips, John, Unbounded Fredholm modules and spectral flow, Canad. J. Math., 50, 4, 673-718 (1998) · Zbl 0915.46063 · doi:10.4153/CJM-1998-038-x
[8] Carey, Alan L.; Phillips, John; Rennie, Adam; Sukochev, Fyodor A., The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math., 202, 2, 451-516 (2006) · Zbl 1118.46060 · doi:10.1016/j.aim.2005.03.011
[9] Carey, Alan L.; Phillips, John; Rennie, Adam; Sukochev, Fyodor A., The local index formula in semifinite von Neumann algebras. II. The even case, Adv. Math., 202, 2, 517-554 (2006) · Zbl 1101.46045 · doi:10.1016/j.aim.2005.03.010
[10] Connes, Alain; Moscovici, Henri, Type III and spectral triples. Traces in number theory, geometry and quantum fields, Aspects Math., E38, 57-71 (2008), Friedr. Vieweg, Wiesbaden · Zbl 1159.46041
[11] Kaad, J.; Nest, R.; Rennie, A., \(KK\)-theory and spectral flow in von Neumann algebras, J. K-Theory, 10, 2, 241-277 (2012) · Zbl 1260.19001 · doi:10.1017/is012003003jkt185
[12] Loring, Terry A., \(K\)-theory and pseudospectra for topological insulators, Ann. Physics, 356, 383-416 (2015) · Zbl 1343.46063 · doi:10.1016/j.aop.2015.02.031
[13] Loring, Terry A., Bulk spectrum and \(K\)-theory for infinite-area topological quasicrystals, J. Math. Phys., 60, 8, 081903, 16 pp. (2019) · Zbl 1434.82093 · doi:10.1063/1.5083051
[14] Loring, Terry A.; Schulz-Baldes, Hermann, Finite volume calculation of \(K\)-theory invariants, New York J. Math., 23, 1111-1140 (2017) · Zbl 1384.46048
[15] Loring, Terry; Schulz-Baldes, Hermann, The spectral localizer for even index pairings, J. Noncommut. Geom., 14, 1, 1-23 (2020) · Zbl 1441.19011 · doi:10.4171/JNCG/357
[16] Loring, Terry A.; Schulz-Baldes, Hermann, Spectral flow argument localizing an odd index pairing, Canad. Math. Bull., 62, 2, 373-381 (2019) · Zbl 1410.19002 · doi:10.4153/cmb-2018-013-x
[17] Lozano Viesca, Edgar; Schober, Jonas; Schulz-Baldes, Hermann, Chern numbers as half-signature of the spectral localizer, J. Math. Phys., 60, 7, 072101, 13 pp. (2019) · Zbl 1421.82040 · doi:10.1063/1.5094300
[18] Phillips, John, Spectral flow in type I and II factors-a new approach. Cyclic cohomology and noncommutative geometry, Waterloo, ON, 1995, Fields Inst. Commun. 17, 137-153 (1997), Amer. Math. Soc., Providence, RI · Zbl 0891.46044
[19] Phillips, John; Raeburn, Iain, An index theorem for Toeplitz operators with noncommutative symbol space, J. Funct. Anal., 120, 2, 239-263 (1994) · Zbl 0815.47033 · doi:10.1006/jfan.1994.1032
[20] Prodan, Emil, A computational non-commutative geometry program for disordered topological insulators, SpringerBriefs in Mathematical Physics 23, x+118 pp. (2017), Springer, Cham · Zbl 1371.82004 · doi:10.1007/978-3-319-55023-7
[21] Prodan, Emil; Schulz-Baldes, Hermann, Bulk and boundary invariants for complex topological insulators, Mathematical Physics Studies, xxii+204 pp. (2016), Springer, [Cham] · Zbl 1342.82002 · doi:10.1007/978-3-319-29351-6
[22] Prodan, Emil; Schulz-Baldes, Hermann, Generalized Connes-Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators, Rev. Math. Phys., 28, 10, 1650024, 76 pp. (2016) · Zbl 1358.81130 · doi:10.1142/S0129055X16500240
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.