×

On the pitchfork bifurcation for the Chafee-Infante equation with additive noise. (English) Zbl 1531.37044

Summary: We investigate pitchfork bifurcations for a stochastic reaction diffusion equation perturbed by an infinite-dimensional Wiener process. It is well-known that the random attractor is a singleton, independently of the value of the bifurcation parameter; this phenomenon is often referred to as the “destruction” of the bifurcation by the noise. Analogous to the results of M. Callaway et al. [Ann. Inst. Henri Poincaré, Probab. Stat. 53, No. 4, 1548–1574 (2017; Zbl 1383.37037)] for a 1D stochastic ODE, we show that some remnant of the bifurcation persists for this SPDE model in the form of a positive finite-time Lyapunov exponent. Additionally, we prove finite-time expansion of volume with increasing dimension as the bifurcation parameter crosses further eigenvalues of the Laplacian.

MSC:

37H20 Bifurcation theory for random and stochastic dynamical systems
37L55 Infinite-dimensional random dynamical systems; stochastic equations
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H50 Regularization by noise

Citations:

Zbl 1383.37037

References:

[1] Amann, H.: Linear and quasilinear parabolic problems. Volume 106 of Monographs in Mathematics, Vol. II. Birkhäuser/Springer, Cham (2019). Function spaces · Zbl 1448.46004
[2] Arnold, L., A formula connecting sample and moment stability of linear stochastic systems, SIAM J. Math. Annal., 44, 4, 793-802 (1984) · Zbl 0561.93063 · doi:10.1137/0144057
[3] Arnold, L., Random Dynamical Systems. Springer Monographs in Mathematics (1998), Berlin: Springer, Berlin · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[4] Arnold, L.; Chueshov, I., Order-preserving random dynamical systems: equilibria, attractors, applications, Dyn. Stab. Syst., 13, 3, 265-280 (1998) · Zbl 0938.37031 · doi:10.1080/02681119808806264
[5] Barret, F., Sharp asymptotics of metastable transition times for one dimensional SPDEs, Ann. Inst. Henri Poincaré Probab. Stat., 51, 1, 129-166 (2015) · Zbl 1319.82019 · doi:10.1214/13-AIHP575
[6] Berglund, N.; Gentz, B., Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond, Electron. J. Probab., 18, 1-58 (2013) · Zbl 1285.60060 · doi:10.1214/EJP.v18-1802
[7] Bianchi, LA; Blömker, D.; Yang, M., Additive noise destroys the random attractor close to bifurcation, Nonlinearity, 29, 2, 3934 (2016) · Zbl 1357.60064 · doi:10.1088/0951-7715/29/12/3934
[8] Callaway, M.; Doan, TS; Lamb, JSW; Rasmussen, M., The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with additive noise, Ann. Inst. Henri Poincaré Probab. Stat., 53, 4, 1548-1574 (2017) · Zbl 1383.37037 · doi:10.1214/16-AIHP763
[9] Caraballo, T.; Crauel, H.; Langa, JA; Robinson, JC, The effect of noise on the Chafee-Infante equation: a nonlinear case study, Proc. Am. Math. Soc., 135, 2, 373-382 (2007) · Zbl 1173.60022 · doi:10.1090/S0002-9939-06-08593-5
[10] Caraballo, T.; Langa, JA; Robinson, JC, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dyn. Syst., 6, 4, 875-892 (2000) · Zbl 1011.37031 · doi:10.3934/dcds.2000.6.875
[11] Cerrai, S., Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients, Stoch.: Int. J. Probab. Stoch. Process., 67, 17-51 (1997) · Zbl 0935.60049
[12] Chueshov, I., Gevrey regularity of random attractors for stochastic reaction-diffusion equations, Rand.. Oper Stoch. Equ., 8, 2, 143-162 (2000) · Zbl 0959.60045 · doi:10.1515/rose.2000.8.2.143
[13] Chueshov, I.; Scheutzow, M., Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dyn. Differ. Equ., 13, 2, 355-380 (2001) · Zbl 0990.37041 · doi:10.1023/A:1016684108862
[14] Chueshov, ID; Vuillermot, P-A, Non-random invariant sets for some systems of parabolic stochastic partial differential equations, Stoch. Anal. Appl., 22, 6, 1421-1486 (2004) · Zbl 1065.60076 · doi:10.1081/SAP-200029487
[15] Crauel, H.; Flandoli, F., Additive noise destroys a pitchfork bifurcation, J. Dyn. Differ. Equ., 10, 2, 259-274 (1998) · Zbl 0907.34042 · doi:10.1023/A:1022665916629
[16] Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Volume 152 of Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2014) · Zbl 1317.60077
[17] Debussche, A., Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77, 967-988 (1998) · Zbl 0919.58044 · doi:10.1016/S0021-7824(99)80001-4
[18] Doan, TS; Engel, M.; Lamb, JSW; Rasmussen, M., Hopf bifurcation with additive noise, Nonlinearity, 31, 10, 4567-4601 (2018) · Zbl 1396.37062 · doi:10.1088/1361-6544/aad208
[19] Es-Sarhir, A.; Stannat, W., Invariant measures for semilinear SPDE’s with local Lipschitz drift coefficients and applications, J. Evol. Equ., 8, 1, 129-154 (2008) · Zbl 1156.47042 · doi:10.1007/s00028-007-0354-3
[20] Flandoli, F.; Gess, B.; Scheutzow, M., Synchronization by noise, Probab. Theory Related Fields, 168, 3-4, 511-556 (2017) · Zbl 1385.37017 · doi:10.1007/s00440-016-0716-2
[21] Flandoli, F.; Gess, B.; Scheutzow, M., Synchronization by noise for order-preserving random dynamical systems, Ann. Probab., 45, 2, 1325-1350 (2017) · Zbl 1379.37101 · doi:10.1214/16-AOP1088
[22] Gess, B.; Tsatsoulis, P., Synchronization by noise for the stochastic quantization equation in dimensions 2 and 3, Stoch. Dyn., 20, 2040006 (2020) · Zbl 1454.60093 · doi:10.1142/S0219493720400067
[23] Gess, B., Tsatsoulis, P.: Lyapunov exponents and synchronisation by noise for systems of SPDEs. arXiv:2207.09820 (2022)
[24] Id, C.; Scheutzow, M., On the structure of attractors and invariant measures fora class of monotone random systems, Dyn. Syst., 19, 127-144 (2004) · Zbl 1061.37032 · doi:10.1080/1468936042000207792
[25] Kuksin, S., Shirikyan, A.: Mathematics of two-dimensional turbulence. Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, Cambridge (2012) · Zbl 1333.76003
[26] Lewowicz, J., Lyapunov functions and topological stability, J. Differ. Equ., 38, 2, 192-209 (1980) · Zbl 0418.58012 · doi:10.1016/0022-0396(80)90004-2
[27] Oliver, T., Collapse of attractors for ODEs under small random perturbations, Probab. Theory Rel. Fields, 141, 1-18 (2008) · Zbl 1143.34034 · doi:10.1007/s00440-006-0051-0
[28] Oseledets, VI, A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems, Trudy Mosk. Mat. Obshch., 19, 179-210 (1968) · Zbl 0236.93034
[29] Robinson, J.C.: Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors · Zbl 0980.35001
[30] Ruelle, D., Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math., 115, 2, 243-290 (1982) · Zbl 0493.58015 · doi:10.2307/1971392
[31] Seidler, J.: A note on the strong Feller property, unpublished lecture notes (2001). http://simu0292.utia.cas.cz/seidler/nsfp.ps
[32] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), New York: Springer, New York · Zbl 0871.35001 · doi:10.1007/978-1-4612-0645-3
[33] Yagi, A., Abstract Parabolic Evolution Equations and their Applications (2010), Berlin: Springer, Berlin · Zbl 1190.35004 · doi:10.1007/978-3-642-04631-5
[34] Young, L-S, Mathematical theory of Lyapunov exponents, J. Phys. A: Math. Theor., 46, 25 (2013) · Zbl 1351.37135 · doi:10.1088/1751-8113/46/25/254001
[35] Zhao, W., \({H}^1\)-random attractors for stochastic reaction-diffusion equations with additive noise, Nonlinear Anal., 84, 61-72 (2013) · Zbl 1283.60093 · doi:10.1016/j.na.2013.01.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.