×

Non-random invariant sets for some systems of parabolic stochastic partial differential equations. (English) Zbl 1065.60076

The authors prove the existence of non-random invariant sets and establish comparison results for a class of parabolic systems of \(m\) stochastic partial differential equations in \(m\) unknowns, where \(m\in\mathbb{N}^+\) is arbitrary. The problem is the fact that the systems are defined on bounded domains of \(\mathbb{R}^n\) where \(n\in\mathbb{N}^+\) is arbitrary, and the authors consider the following system of nonlinear Itô parabolic SPDE’s \[ du^\ell(x,t)=(-A^\ell(x,t,D)u^\ell(x,t)+f^\ell(x,t,u(x,t))Du(x,t)dt+ \sum^\infty_{j=1}q_jg^\ell_j(x,t,u(x,t))dW(t),\tag{1} \] \(\ell=1,2,\dots,m\), \(x\in {\mathcal O}\), \(t>0\), in a bounded smooth domain \({\mathcal O}\in\mathbb{R}^n\) with the boundary and initial conditions \[ B^\ell(x,D)u^\ell(x,t)=0,\;x\in\partial{\mathcal O},\;t>0;\quad u^\ell(0,x)=u^\ell_0(x),\;x\in\overline{\mathcal O},\;\ell=1,2,\dots,m.\tag{2} \] The key of the proof is a Wong-Zakai type approximation theorem for the stochastic problem (1) and (2).
Section 2 is entitled “Main hypotheses and preliminaries”. In Section 3 the authors prove the existence and uniqueness theorem for the stochastic problem (1) and (2). In the first part of Section 4 they study properties of smooth approimation of the problem (1) and (2) and introduce the concept of \(\varepsilon\)-residual approximate solutions to the problem (1) and (2) and prove their existence. The authors invoke some ideas developed by Ya. I. Belopolskaya and Yu. L. Daletskij [“Stochastic equations and differential geometry” (1990; Zbl 0696.60053)] in the abstract setting of bounded operators. Using these considerations they conclude the proof of the approximation theorem.
Section 5 contains the main results. The authors give conditions on \(f^i(x,t,u,\eta)\) and \(g^i_j(x,t,u)\) under which problem (1) and (2) possesses solutions \(u(x,t,\omega)\) that belong to some deterministic set \(D\subset\mathbb{R}^m\) for all \((x,t)\in\overline{\mathcal O}\times\mathbb{R}_+\) and for almost all \(\omega \in \Omega\) (see Theorem 5.6). The result on the existence of invariant sets for (1) and (2) extends, to stochastic systems, the theorem proved by H. Amann (1978) in the deterministic case. The authors invoke these results to obtain the corresponding result for the smooth regularizations of the system (1) and (2). They also prove a comparison principle (see Theorem 5.8) for the problem considered in the case of cooperative \(f\) and \(g_j\). Section 6 treats several examples concerning certain stochastic Lotka-Volterra or Ginzburg-Landau equations.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces

Citations:

Zbl 0696.60053
Full Text: DOI

References:

[1] Abrahams E., Phys. Rev. 152 (1) pp 416– (1966) · doi:10.1103/PhysRev.152.416
[2] DOI: 10.1016/0022-247X(78)90192-0 · Zbl 0387.35038 · doi:10.1016/0022-247X(78)90192-0
[3] Amann H., Function Spaces, Differential Operators and Nonlinear Analysis pp 9– (1993) · doi:10.1007/978-3-663-11336-2_1
[4] DOI: 10.1007/978-3-0348-9221-6 · doi:10.1007/978-3-0348-9221-6
[5] DOI: 10.1080/02681119808806264 · Zbl 0938.37031 · doi:10.1080/02681119808806264
[6] DOI: 10.1016/S0304-4149(99)00031-9 · Zbl 0997.60064 · doi:10.1016/S0304-4149(99)00031-9
[7] DOI: 10.1080/07362999808809512 · Zbl 0931.60059 · doi:10.1080/07362999808809512
[8] Babin A.V., Attractors of Evolution Equations (1992) · Zbl 0778.58002
[9] DOI: 10.1007/978-94-009-2215-0 · doi:10.1007/978-94-009-2215-0
[10] DOI: 10.1016/S0304-4149(00)00082-X · Zbl 1047.60062 · doi:10.1016/S0304-4149(00)00082-X
[11] Bergh J., Interpolation Spaces: An Introduction (1976) · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[12] DOI: 10.1016/S0007-4497(98)80341-2 · Zbl 0912.35027 · doi:10.1016/S0007-4497(98)80341-2
[13] DOI: 10.1080/17442508808833526 · Zbl 0653.60049 · doi:10.1080/17442508808833526
[14] DOI: 10.1007/s00440-002-0230-6 · Zbl 1027.60064 · doi:10.1007/s00440-002-0230-6
[15] DOI: 10.1512/iumj.1977.26.26029 · Zbl 0368.35040 · doi:10.1512/iumj.1977.26.26029
[16] Chueshov I.D., International Conference on Differential Equations, EQUADIF 99, Berlin, Aug 1–7, 1999 1 pp 711– (2000)
[17] Chueshov I.D., University Lectures in Contemporary Mathematics 1 (2002)
[18] Chueshov I.D., Lecture Notes in Mathematics 1779, in: Monotone Random Systems: Theory and Applications (2002) · Zbl 1023.37030 · doi:10.1007/b83277
[19] Chueshov I.D., Ann. I. H. Poincaré-AN 15 (2) pp 191– (1998) · Zbl 0930.60046 · doi:10.1016/S0294-1449(97)89299-2
[20] DOI: 10.1007/s004400050186 · Zbl 0914.35021 · doi:10.1007/s004400050186
[21] Chueshov I.D., Stochastic Anal. and Appl. 18 (4) pp 581– (2000) · Zbl 0968.60058 · doi:10.1080/07362990008809687
[22] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[23] DOI: 10.1017/CBO9780511662829 · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[24] Daners D., Abstract Evolution Equations, Periodic Problems and Applications (1992) · Zbl 0789.35001
[25] DOI: 10.1007/BF01197335 · Zbl 0794.60059 · doi:10.1007/BF01197335
[26] DOI: 10.1016/0022-0396(81)90016-4 · Zbl 0431.35008 · doi:10.1016/0022-0396(81)90016-4
[27] DOI: 10.1016/0304-4149(94)90055-8 · Zbl 0809.60074 · doi:10.1016/0304-4149(94)90055-8
[28] Grecksch W., Mathematical Research 85, in: Stochastic Evolution Equations – a Hilbert Space Approach (1995)
[29] DOI: 10.1080/17442508808833533 · Zbl 0669.60058 · doi:10.1080/17442508808833533
[30] Gyöngy I., Part II. Stochastics 26 pp 129– (1989)
[31] Hale J.K., AMS-Mathematical Surveys and Monographs 25, in: Asymptotic Behavior of Dissipative Systems (1988)
[32] Hess P., Pitman Research Notes in Mathematics Series 247, in: Periodic-Parabolic Boundary Value Problems and Positivity (1991)
[33] DOI: 10.1023/A:1012932212645 · Zbl 0994.35125 · doi:10.1023/A:1012932212645
[34] Ikeda N., North Holland Mathematical Library 24, in: Stochastic Differential Equations and Diffusion Processes (1981) · Zbl 0495.60005
[35] DOI: 10.1007/BF01195385 · Zbl 0767.60053 · doi:10.1007/BF01195385
[36] Manthey R., Stochastics Stochastics Rep. 66 pp 37– (1999) · Zbl 0926.60051 · doi:10.1080/17442509908834186
[37] DOI: 10.1080/07362999708809465 · Zbl 0876.60034 · doi:10.1080/07362999708809465
[38] Pao C.V., Nonlinear Parabolic and Elliptic Equations (1992) · Zbl 0777.35001
[39] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1993) · Zbl 0516.47023
[40] DOI: 10.1214/aop/1176992905 · Zbl 0578.60055 · doi:10.1214/aop/1176992905
[41] DOI: 10.1016/0022-0396(86)90084-7 · Zbl 0604.35041 · doi:10.1016/0022-0396(86)90084-7
[42] DOI: 10.1007/BF00280826 · Zbl 0377.35038 · doi:10.1007/BF00280826
[43] Sanz-Solé M., C. R. Acad. Sci. Paris, Ser. I 334 pp 869– (2002) · Zbl 1005.60075 · doi:10.1016/S1631-073X(02)02359-2
[44] DOI: 10.1016/S0246-0203(03)00015-3 · Zbl 1026.60080 · doi:10.1016/S0246-0203(03)00015-3
[45] Smith H.L., AMS-Mathematical Surveys and Monographs 41, in: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems (1995)
[46] DOI: 10.1007/978-1-4684-0313-8 · doi:10.1007/978-1-4684-0313-8
[47] Tribel H., Interpolation Theory, Functional Spaces and Differential Operators (1978)
[48] DOI: 10.1080/07362999508809419 · Zbl 0839.60059 · doi:10.1080/07362999508809419
[49] DOI: 10.1007/BF00047670 · Zbl 0860.60041 · doi:10.1007/BF00047670
[50] Vishnevskiĭ M.P., Mat. Sb. 183 (10) pp 45– (1992)
[51] Vuillermot P.-A., Proc. Amer. Math. Soc. 116 (3) pp 775– (1992)
[52] Wong E., McGraw-Hill Series in Systems Science, in: Stochastic Processes in Information and Dynamical Systems (1971)
[53] DOI: 10.1007/BF00531642 · Zbl 0185.44401 · doi:10.1007/BF00531642
[54] Zabczyk J., Rendiconti Mat. Acc. Lincei 9 pp 67– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.