×

Synchronization by noise for the stochastic quantization equation in dimensions 2 and 3. (English) Zbl 1454.60093

A stochastic quantization equation \[ (\partial_t-\Delta)u=-(u^3-3\infty u)+u+\xi,\quad u|_{t=0}=f\tag{1} \] is considered on \((0,\infty)\times\mathbb T^d\) for \(d\in\{2,3\}\), where \(\xi\) is a space-time white noise and \(\mathbb T^d\) is a \(d\)-dimensional torus of an arbitrary size. A solution \(u\) of this equation is understood in the sense of renormalizations, i.e., \(u\) a nontrivial limit of \(u_\varepsilon\) that solve \[ (\partial_t-\Delta)u_\varepsilon=-(u_\varepsilon^3-3C_\varepsilon u_\varepsilon)+u_\varepsilon+\xi_\varepsilon,\quad u_\varepsilon|_{t=0}=f, \] where \(\xi_\varepsilon=\xi*\rho_\varepsilon\) for a suitable mollifier \(\rho_\varepsilon\) and for suitable renormalization constants \(C_\varepsilon\nearrow\infty\) as \(\varepsilon\searrow 0\) (the limit \(u\) is independent of \(\rho_\varepsilon\)). Let \(\psi_s\) denote the periodic heat kernel on \(\mathbb T^d\) and let \(\alpha>0\). Define \[ \|f\|_{-\alpha}=\sup_{s\in(0,1]}s^\frac{\alpha}{2}\|\psi_s*f\|_{L^\infty(\mathbb T^d)} \] and let \(\mathcal C^{-\alpha}\) be defined as the closure of \(C^\infty\)-period functions with respect to \(\|\cdot\|_{-\alpha}\). Under this set-up, the authors assert the following. Let \(\alpha_0=\mathbf 1_{\{d=3\}}\frac{1}{2}+\theta_0\) for a sufficiently small positive \(\theta_0\). Then there exists \(\lambda_*>0\) such that, for every \(\alpha\in(\alpha_0-\delta,\alpha_0]\), \(0<\delta<\theta_0\) and \(p>\frac{d}{\alpha-\alpha_0+\delta}\) integer \[ \left(\mathbf E\left(\sup_{f_1,f_2\in\mathcal C^{-\alpha_0}}\|u(t;f_2)-u(t;f_1)\|_{-\alpha}\right)^p\right)^\frac{1}{p}\le Ce^{-\frac{\lambda_*}{p}t} \] holds where \(C\) depends on \(\alpha\), \(d\) and \(p\). Moreover, there exists a stationary family of random variables \(\{\eta(t)\}_{t\ge 0}\) in \(L^p(\Omega;\mathcal C^{-\alpha})\) with the law of \(\eta(0)\) being the invariant measure for (1) such that \[ \left(\mathbf E\left(\sup_{f\in\mathcal C^{-\alpha_0}}\|u(t;f)-\eta(t)\|_{-\alpha}\right)^p\right)^\frac{1}{p}\le Ce^{-\frac{\lambda_*}{p}t}. \]

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
37A25 Ergodicity, mixing, rates of mixing
35K57 Reaction-diffusion equations

References:

[1] Arnold, L. and Chueshov, I., Order-preserving random dynamical systems: Equilibria, attractors, applications, Dyn. Stab. Syst.13 (1998) 265-280. · Zbl 0938.37031
[2] Arnold, L., Crauel, H. and Wihstutz, V., Stabilization of linear systems by noise, SIAM J. Control Optim.21 (1983) 451-461. · Zbl 0514.93069
[3] Bahouri, H., Chemin, J.-Y. and Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, , Vol. 343 (Springer, 2011). · Zbl 1227.35004
[4] Baxendale, P. H., Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms, in Spatial Stochastic Processes, , Vol. 19 (BirkhäuserBoston, 1991), pp. 189-218. · Zbl 0744.60063
[5] O. Butkovsky and M. Scheutzow, Couplings via comparison principle and exponential ergodicity of SPDEs in the hypoelliptic setting, preprint (2019), arXiv:1907.03725.
[6] Caraballo, T., Chueshov, I. D. and Kloeden, P. E., Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal.38 (2006/2007) 1489-1507. · Zbl 1125.37058
[7] Caraballo, T., Crauel, H., Langa, J. A. and Robinson, J. C., The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proc. Amer. Math. Soc.135 (2007) 373-382. · Zbl 1173.60022
[8] Chueshov, I., Monotone Random Systems Theory and Applications, , Vol. 1779 (Springer-Verlag, 2002). · Zbl 1023.37030
[9] Chueshov, I. and Scheutzow, M., On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst.19 (2004) 127-144. · Zbl 1061.37032
[10] Chueshov, I. and Schmalfuß, B., Master-slave synchronization and invariant manifolds for coupled stochastic systems, J. Math. Phys.51 (2010) 102702. · Zbl 1314.34116
[11] Cranston, M., Gess, B. and Scheutzow, M., Weak synchronization for isotropic flows, Discrete Contin. Dyn. Syst. Ser. B21 (2016) 3003-3014. · Zbl 1368.37059
[12] Da Prato, G. and Debussche, A., Strong solutions to the stochastic quantization equations, Ann. Probab.31 (2003) 1900-1916. · Zbl 1071.81070
[13] K. Dareiotis, B. Gess and P. Tsatsoulis, Ergodicity for stochastic porous media equations with multiplicative noise, to appear in SIAM J. Math. Anal. (2020) doi: 10.1137/19M1278521. · Zbl 1448.76154
[14] Flandoli, F., Gess, B. and Scheutzow, M., Synchronization by noise, Probab. Theory Related Fields168 (2017) 511-556. · Zbl 1385.37017
[15] Flandoli, F., Gess, B. and Scheutzow, M., Synchronization by noise for order-preserving random dynamical systems, Ann. Probab.45 (2017) 1325-1350. · Zbl 1379.37101
[16] Gess, B., Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differential Equations25 (2013) 121-157. · Zbl 1264.37047
[17] Gess, B., Random attractors for singular stochastic evolution equations, J. Differential Equations255 (2013) 524-559. · Zbl 1338.37120
[18] Hairer, M., A theory of regularity structures, Invent. Math.198 (2014) 269-504. · Zbl 1332.60093
[19] M. Hairer and P. Schönbauer, The support of singular stochastic PDEs, preprint (2019), arXiv:1909.05526.
[20] Homburg, A. J., Synchronization in minimal iterated function systems on compact manifolds, Bull. Braz. Math. Soc. (N.S.)49 (2018) 615-635. · Zbl 1408.37038
[21] Jäger, T. and Keller, G., Random minimality and continuity of invariant graphs in random dynamical systems, Trans. Amer. Math. Soc.368 (2016) 6643-6662. · Zbl 1354.37007
[22] Keller, G., Jafri, H. H. and Ramaswamy, R., Nature of weak generalized synchronization in chaotically driven maps, Phys. Rev. E87 (2013) 042913.
[23] Martinelli, F., Sbano, L. and Scoppola, E., Small random perturbation of dynamical systems: Recursive multiscale analysis, Stoch. Stoch. Rep.49 (1994) 253-272. · Zbl 0827.60042
[24] Martinelli, F. and Scoppola, E., Small random perturbations of dynamical systems: Exponential loss of memory of the initial condition, Comm. Math. Phys.120 (1988) 25-69. · Zbl 0659.60092
[25] A. Moinat and H. Weber, Space-time localisation for the dynamic \(\operatorname{\Phi}_3^4\) model, preprint (2018), arXiv:1811.05764.
[26] Mourrat, J.-C. and Weber, H., The dynamic \(\operatorname{\Phi}_3^4\) model comes down from infinity, Comm. Math. Phys.356 (2017) 673-753. · Zbl 1384.81068
[27] Newman, J., Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergod. Theory Dyn. Syst.38 (2018) 1857-1875. · Zbl 1396.37060
[28] Otto, F. and Weber, H., Quasilinear SPDEs via rough paths, Arch. Ration. Mech. Anal.232 (2019) 873-950. · Zbl 1426.60090
[29] T. C. Rosati, Synchronization for KPZ, preprint (2019), arXiv:1907.06278.
[30] Tearne, O. M., Collapse of attractors for ODEs under small random perturbations, Probab. Theory Related Fields141 (2008) 1-18. · Zbl 1143.34034
[31] Tsatsoulis, P. and Weber, H., Spectral gap for the stochastic quantization equation on the 2-dimensional torus, Ann. Inst. Henri Poincaré Probab. Stat.54 (2018) 1204-1249. · Zbl 1403.81030
[32] Tsatsoulis, P. and Weber, H., Exponential loss of memory for the 2-dimensional Allen-Cahn equation with small noise, Probab. Theory Related Fields177 (2020) 257-322. · Zbl 1451.60075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.