×

Isometric embedding and Darboux integrability. (English) Zbl 1429.53019

Summary: Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold \((\mathbf{M}, \mathbf{g})\) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold \((\mathbf{N}, \mathbf{h})\), one can ask under what circumstances does the exterior differential system \(\mathcal{I}\) for an isometric embedding \(M\hookrightarrow N\) have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics \(\mathbf{g}\) whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds \((N, \mathbf{h})\) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, \(\mathbf{g}_0\), showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of \(\mathbf{g}_0\) is shown to be reducible to a system of two first-order ODEs for two unknown functions – or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for \(\mathbf{g}_0\) up to quadrature. The results described for \(\mathbf{g}_0\) also hold for any classified metric whose embedding system is hyperbolic.

MSC:

53A55 Differential invariants (local theory), geometric objects
58A17 Pfaffian systems
58A30 Vector distributions (subbundles of the tangent bundles)
93C10 Nonlinear systems in control theory

Software:

Cartan

References:

[1] Anderson, I.M., Fels, M.E., Vassiliou, P.J.: Superposition formulas for exterior differential systems. Adv. Math. 221, 1910-1963 (2009) · Zbl 1196.37104 · doi:10.1016/j.aim.2009.03.010
[2] Anderson, I.M., Fels, M.E.: On solving the Cauchy problem by quadratures and non-linear d’Alembert formulas. Symmetry Integr. Geom. Methods Appl. (SIGMA) 9, 024 (2013)
[3] Anderson, I.M., Fels, M.E.: Bäcklund transformations for Darboux integrable differential systems: examples and applications. J. Geom. Phys. 102, 1-31 (2016) · Zbl 1343.37072 · doi:10.1016/j.geomphys.2015.12.005
[4] Brito, F., Leite, M.L., De Souza Neto, V.: Liouville’s formula under the viewpoint of minimal surfaces. Commun. Pure Appl. Anal. 3(1), 41-51 (2004) · Zbl 1060.35043 · doi:10.3934/cpaa.2004.3.41
[5] Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Asterisque (154-155): 12, 321-347 (1988). 353 · Zbl 0635.53047
[6] Bryant, R., Chern, S., Gardner, R., Griffiths, P., Goldschmidt, H.: Exterior Differential Systems. MSRI Publications, Berkeley (1990) · Zbl 0726.58002
[7] Clelland, J.N.: From Frenet to Cartan: The Method of Moving Frames. Graduate Studies in Mathematics, vol. 178. American Mathematical Society, Providence (2017) · Zbl 1365.53001 · doi:10.1090/gsm/178
[8] Clelland, J.N., Vassiliou, P.J.: A solvable string on a Lorentzian surface. Differ. Geom. Appl. 33, 177-198 (2014) · Zbl 1284.58017 · doi:10.1016/j.difgeo.2013.10.009
[9] Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass-type representations of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6(4), 633-668 (1998) · Zbl 0932.58018 · doi:10.4310/CAG.1998.v6.n4.a1
[10] Ferus, D., Pedit, F.: Isometric immersions of space forms and soliton theory. Math. Ann. 305, 329-342 (1996) · Zbl 0866.53046 · doi:10.1007/BF01444224
[11] Goursat, E.: Lecons sur l’intégration des équations aux dérivées partielles du seconde ordre á deux variables indépendent. Tome II, Hermann, Paris (1898) · JFM 29.0296.05
[12] Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. Mathematical Surveys and Monographs, vol. 130. American Mathematical Society, Providence (2006) · Zbl 1113.53002 · doi:10.1090/surv/130
[13] Ivey, T.A.: Isometric Embedding for Surfaces: Classical Approaches and Integrability. arXiv:1903.03677 · Zbl 0978.53019
[14] Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics, vol. 175, 2nd edn., American Mathematical Society, Providence (2016) · Zbl 1361.53001
[15] Kiyohara, K.: Two Classes of Riemannian Manifolds Whose Geodesic Flows Are Integrable Memoirs of the American Mathematical Society, vol. 130(619). American Mathematical Society, Providence (1997) · Zbl 0904.53007
[16] Liouville, J.: Sur l’équation aux differences partielles \[\displaystyle \frac{d^2\log \lambda }{du dv}\pm \frac{\lambda }{2a^2}\] d2logλdudv±λ2a2, J. Math. Pure Appl. 1re serie, 18, 71-72 (1853)
[17] Melko, M., Sterling, I.: Application of soliton theory to the construction of pseudo-spherical surfaces in \[R^3\] R3. Ann. Glob. Anal. and Geom. 11, 65-107 (1993) · Zbl 0810.53003
[18] Melko, M., Sterling, I.: Integrable systems, harmonic maps and the classical theory of surfaces, Harmonic maps and integrable systems, Aspects of Mathematics, E23, Vieweg, A. P. Fordy and J. C. Wood, editors (1994) · Zbl 0814.58014
[19] Nie, Z.: Toda field theories and integral curves of standard differential systems. J. Lie Theory 27, 377-395 (2017) · Zbl 1377.37098
[20] Rogers, C., Schief, W.: Backlund and Darboux Transformations. Cambridge University Press, Cambridge (2002) · Zbl 1019.53002 · doi:10.1017/CBO9780511606359
[21] Terng, C.: Soliton equations and differential geometry. J. Differ. Geom. 45, 407-445 (1997) · Zbl 0877.53022 · doi:10.4310/jdg/1214459804
[22] Vassiliou, P.J.: Vessiot structure for manifolds of \[(p, q)\](p,q)-hyperbolic type: Darboux integrability and symmetry. Trans. Am. Math. Soc. 353(5), 1705-1739 (2000) · Zbl 0984.58003
[23] Vassiliou, P.J.: Tangential characteristic symmetries applicable algebra in engineering. Commun. Comput. 11, 377-395 (2001) · Zbl 0990.35092
[24] Vassiliou, P.J.: Cauchy problem for a Darboux integrable wave map system and equations of lie type. Symmetry Integr. Geom. Methods Appl. (SIGMA) 9, 024 (2013) · Zbl 1269.53064
[25] Vessiot, E.: Sur les équations aux dérivées partielles du second ordre, \[F(x, y, z, p, q, r, s, t)=0F\](x,y,z,p,q,r,s,t)=0, intégrables par la méthode de Darboux. J. Math. Pure Appl. 18, 1-61 (1939) · Zbl 0020.30104
[26] Vessiot, E.: Sur les équations aux dérivées partielles du second ordre, \[F(x, y, z, p, q, r, s, t)= 0F\](x,y,z,p,q,r,s,t)=0, intégrables par la methode de Darboux (suite). J. Math. Pure Appl. 21(9), 1-66 (1942) · Zbl 0026.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.