×

Vessiot structure for manifolds of \((p,q)\)-hyperbolic type: Darboux integrability and symmetry. (English) Zbl 0984.58003

The paper deals with Darboux-integrability of hyperbolic semilinear second order partial differential equations in two variables, which, after a change of variables, can be written in the form \(u _{xy}= f(x,y, u , u _{x}, u _{y})\). It is explained that every such equation is intrinsically associated with a geometric object referred to as a manifold of \((p,q)\)-hyperbolic type of rank \(4\). Roughly speaking, this is a smooth manifold of dimension at least \(6\) with a hyperbolic structure on it.
The problem of classifying these manifolds contains as a subproblem the classification problem for Lie groups and is thus extremely complex. It is solved therefore only under some additional assumptions.
The paper contains a number of rather explicit examples.

MSC:

58D27 Moduli problems for differential geometric structures
58J45 Hyperbolic equations on manifolds
58J70 Invariance and symmetry properties for PDEs on manifolds
35L70 Second-order nonlinear hyperbolic equations
Full Text: DOI

References:

[1] Ian M. Anderson and Niky Kamran, The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane, Duke Math. J. 87 (1997), no. 2, 265 – 319. · Zbl 0881.35069 · doi:10.1215/S0012-7094-97-08711-1
[2] Ian M. Anderson, Niky Kamran, and Peter J. Olver, Internal, external, and generalized symmetries, Adv. Math. 100 (1993), no. 1, 53 – 100. · Zbl 0809.58044 · doi:10.1006/aima.1993.1029
[3] Robert L. Bryant, An introduction to Lie groups and symplectic geometry, Geometry and quantum field theory (Park City, UT, 1991) IAS/Park City Math. Ser., vol. 1, Amer. Math. Soc., Providence, RI, 1995, pp. 5 – 181. · Zbl 0853.53024
[4] Robert L. Bryant and Lucas Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), no. 2, 435 – 461. · Zbl 0807.58007 · doi:10.1007/BF01232676
[5] R. Bryant, P. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws. I, Selecta Math. (N.S.) 1 (1995), no. 1, 21 – 112. , https://doi.org/10.1007/BF01614073 R. Bryant, P. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws. II, Selecta Math. (N.S.) 1 (1995), no. 2, 265 – 323. · Zbl 0853.58103 · doi:10.1007/BF01671567
[6] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. · Zbl 0726.58002
[7] É. Cartan, Les systèmes de Pfaff á cinq variables et les équations aux dérivées partielles du seconde ordre, Ann. Sci. École Norm. (3) 27 (1910), 109-192. · JFM 41.0417.01
[8] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. · Zbl 0099.29504
[9] Robert B. Gardner, A differential geometric generalization of characteristics, Comm. Pure Appl. Math. 22 (1969), 597 – 626. · Zbl 0182.42602 · doi:10.1002/cpa.3160220504
[10] R. B. Gardner and N. Kamran, Characteristics and the geometry of hyperbolic equations in the plane, J. Differential Equations 104 (1993), no. 1, 60 – 116. · Zbl 0797.35122 · doi:10.1006/jdeq.1993.1064
[11] E. Goursat, Leçons sur l’intégration des équations aux dérivées partielles du second order á deux variables indépendent, Tome 1, Hermann, Paris, 1896. · JFM 27.0264.04
[12] E. Goursat, Recherches sur quelques équation aux dérivées partielles du second ordre, Ann. Fac. Toulouse \(2^e\) serie (1899), 31-68, 439-464. · JFM 30.0325.02
[13] L. Hsu and N. Kamran, Classification of second-order ordinary differential equations admitting Lie groups of fibre-preserving point symmetries, Proc. London Math. Soc. (3) 58 (1989), no. 2, 387 – 416. · Zbl 0675.58046 · doi:10.1112/plms/s3-58.2.387
[14] Martin Juráš and Ian M. Anderson, Generalized Laplace invariants and the method of Darboux, Duke Math. J. 89 (1997), no. 2, 351 – 375. · Zbl 0885.35075 · doi:10.1215/S0012-7094-97-08916-X
[15] Niky Kamran, Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8^{\?} (2) 45 (1989), no. 7, 122 (English, with French summary). · Zbl 0721.58001
[16] I. S. Krasil’shchik and A. M. Vinogradov , Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, Vol. 182, Amer. Math. Soc. 1999. CMP 99:08
[17] S. Lie, Diskussion der differential gleichung \(s=F(z)\), Archiv. für Math. Bd. VI Heft 2 (1881), 112-124. · JFM 13.0297.01
[18] Alan C. Newell, Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985. · Zbl 0565.35003
[19] Richard S. Palais, The symmetries of solitons, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 4, 339 – 403. · Zbl 0886.58040
[20] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program; With a foreword by S. S. Chern. · Zbl 0876.53001
[21] P. J. Vassiliou, Equivalence of vector field systems, Bull. Austral. Math. Soc. 42 (2) (1990), 215–229. · Zbl 0711.58002
[22] P. J. Vassiliou, On some geometry associated with a generalised Toda lattice, Bull. Austral. Math. Soc. 49 (1994), no. 3, 439 – 462. · Zbl 0806.58050 · doi:10.1017/S0004972700016555
[23] P. J. Vassiliou, Intrinsic geometry of systems of first order partial differential equations, School of Mathematics and Statistics, University of Canberra, 1999, preprint.
[24] E. Vessiot, Sur une théorie nouvelles des problèmes généraux d’intégration, Bull. Soc. Math. Fr. 52 (1924), 336-395. · JFM 50.0297.03
[25] E. Vessiot, Sur les faisceaux de transformations infinitésimales associées aux équations aux dérivées partielles du second ordre, \(F(x,y,z,p,q,r,s,t)=0\), J. Math. Pures Appl. 25 (1936), 301-320. · Zbl 0015.21005
[26] E. Vessiot, Sur les équations aux dérivées partielles du second ordre, \(F(x,y,z,p,q,r,s,t) =0\), intégrables par la methode de Darboux, J. Math. Pure Appl. 18 (9), 1-61. · JFM 65.0407.03
[27] E. Vessiot, Sur les équations aux dérivées partielles du second ordre, \(F(x,y,z,p,q,r,s,t) =0\), intégrables par la methode de Darboux (suite), J. Math. Pure Appl. 21 (9) (1942), 1-66. · JFM 68.0200.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.