×

Perturbative post-quench overlaps in quantum field theory. (English) Zbl 1421.81116

Summary: In analytic descriptions of quantum quenches, the overlaps between the initial pre-quench state and the eigenstates of the time evolving Hamiltonian are crucial ingredients. We construct perturbative expansions of these overlaps in quantum field theories where either the pre-quench or the post-quench Hamiltonian is integrable. Using the \(E_8\) Ising field theory for concrete computations, we give explicit expressions for the overlaps up to second order in the quench size, and verify our results against numerical results obtained using the Truncated Conformal Space Approach. We demonstrate that the expansion using the post-quench basis is very effective, but find some serious limitations for the alternative approach using the pre-quench basis.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] Kinoshita, T.; Wenger, T.; Weiss, DS, A quantum Newton’s cradle, Nature, 440, 900 (2006) · doi:10.1038/nature04693
[2] Hofferberth, S.; Lesanovsky, I.; Fischer, B.; Schumm, T.; Schmiedmayer, J., Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature, 449, 324 (2007) · doi:10.1038/nature06149
[3] Simon, J.; Bakr, WS; Ma, R.; Tai, ME; Preiss, PM; Greiner, M., Quantum simulation of antiferromagnetic spin chains in an optical lattice, Nature, 472, 307 (2011) · doi:10.1038/nature09994
[4] Trotzky, S.; etal., Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nature Phys., 8, 325 (2012) · doi:10.1038/nphys2232
[5] Cheneau, M.; etal., Light-cone-like spreading of correlations in a quantum many-body system, Nature, 481, 484 (2012) · doi:10.1038/nature10748
[6] Gring, M.; etal., Relaxation and prethermalization in an isolated quantum system, Science, 337, 1318 (2012) · doi:10.1126/science.1224953
[7] Langen, T.; Geiger, R.; Kuhnert, M.; Rauer, B.; Schmiedmayer, J., Local emergence of thermal correlations in an isolated quantum many-body system, Nature Phys., 9, 640 (2013) · doi:10.1038/nphys2739
[8] Fukuhara, T.; etal., Microscopic observation of magnon bound states and their dynamics, Nature, 502, 76 (2013) · doi:10.1038/nature12541
[9] F. Meinert et al., Quantum quench in an atomic one-dimensional Ising chain, Phys. Rev. Lett.111 (2013) 053003 [arXiv:1304.2628].
[10] Langen, T.; etal., Experimental observation of a generalized gibbs ensemble, Science, 348, 207 (2015) · Zbl 1355.81184 · doi:10.1126/science.1257026
[11] Kaufman, AM; etal., Quantum thermalization through entanglement in an isolated many-body system, Science, 353, 794 (2016) · doi:10.1126/science.aaf6725
[12] Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M., Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys., 83, 863 (2011) · doi:10.1103/RevModPhys.83.863
[13] C. Gogolin and J. Eisert, Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems, Rept. Prog. Phys.79 (2016) 056001 [arXiv:1503.07538] [INSPIRE].
[14] Calabrese, P.; Essler, FHL; Mussardo, G., Introduction to ‘quantum integrability in out of equilibrium systems’, J. Stat. Mech., 6, 064001 (2016) · doi:10.1088/1742-5468/2016/06/064001
[15] P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE]. · Zbl 1097.81014
[16] P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech.0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE]. · Zbl 1456.81358
[17] Deutsch, JM, Quantum statistical mechanics in a closed system, Phys. Rev., A 43, 2046 (1991) · doi:10.1103/PhysRevA.43.2046
[18] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.E 50 (1994) 888 [cond-mat/9403051].
[19] Rigol, M.; Dunjko, V.; Olshanii, M., Thermalization and its mechanism for generic isolated quantum systems, Nature, 452, 854 (2008) · doi:10.1038/nature06838
[20] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett.98 (2007) 050405 [cond-mat/0604476].
[21] Wouters, B.; Nardis, JD; Brockmann, M.; Fioretto, D.; Rigol, M.; Caux, J-S, Quenching the anisotropic heisenberg chain: exact solution and generalized Gibbs ensemble predictions, Phys. Rev. Lett., 113, 117202 (2014) · doi:10.1103/PhysRevLett.113.117202
[22] Pozsgay, B.; etal., Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble, Phys. Rev. Lett., 113, 117203 (2014) · doi:10.1103/PhysRevLett.113.117203
[23] G. Goldstein and N. Andrei, Failure of the local generalized Gibbs ensemble for integrable models with bound states, Phys. Rev.A 90 (2014) 043625 [arXiv:1405.4224].
[24] B. Pozsgay, Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species, J. Stat. Mech.9 (2014) 09026 [arXiv:1406.4613]. · Zbl 1456.82310
[25] Prosen, T., Quasilocal conservation laws in XXZ spin-1/2 chains: open, periodic and twisted boundary conditions, Nucl. Phys., B 886, 1177 (2014) · Zbl 1325.82015 · doi:10.1016/j.nuclphysb.2014.07.024
[26] Ilievski, E.; Nardis, JD; Wouters, B.; Caux, J-S; Essler, F.; Prosen, T., Complete generalized Gibbs ensembles in an interacting theory, Phys. Rev. Lett., 115, 157201 (2015) · doi:10.1103/PhysRevLett.115.157201
[27] E. Ilievski, E. Quinn, J. De Nardis and M. Brockmann, String-charge duality in integrable lattice models, J. Stat. Mech.1606 (2016) 063101 [arXiv:1512.04454] [INSPIRE]. · Zbl 1456.82050
[28] E. Ilievski, M. Medenjak, T. Prosen and L. Zadnik, Quasilocal charges in integrable lattice systems, J. Stat. Mech.1606 (2016) 064008 [arXiv:1603.00440] [INSPIRE]. · Zbl 1456.81238
[29] F.H.L. Essler, G. Mussardo and M. Panfil, Generalized Gibbs ensembles for quantum field theories, Phys. Rev.A 91 (2015) 051602 [arXiv:1411.5352] [INSPIRE]. · Zbl 1457.82064
[30] M.A. Cazalilla, Effect of suddenly turning on interactions in the Luttinger model, Phys. Rev. Lett.97 (2006) 156403 [cond-mat/0606236].
[31] Silva, A., Statistics of the work done on a quantum critical system by quenching a control parameter, Phys. Rev. Lett., 101, 120603 (2008) · doi:10.1103/PhysRevLett.101.120603
[32] Sotiriadis, S.; Calabrese, P.; Cardy, J., Quantum quench from a thermal initial state, EPL (Europhys. Lett.), 87, 20002 (2009) · doi:10.1209/0295-5075/87/20002
[33] D. Fioretto and G. Mussardo, Quantum quenches in integrable field theories, New J. Phys.12 (2010) 055015 [arXiv:0911.3345] [INSPIRE]. · Zbl 1375.81169
[34] Dóra, B.; Haque, M.; Zaránd, G., Crossover from adiabatic to sudden interaction quench in a Luttinger liquid, Phys. Rev. Lett., 106, 156406 (2011) · doi:10.1103/PhysRevLett.106.156406
[35] Calabrese, P.; Essler, FHL; Fagotti, M., Quantum quench in the transverse field Ising chain, Phys. Rev. Lett., 106, 227203 (2011) · doi:10.1103/PhysRevLett.106.227203
[36] P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators, J. Statist. Mech.7 (2012) 07016 [arXiv:1204.3911].
[37] P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain: II. Stationary state properties, J. Stat. Mech.7 (2012) 07022 [arXiv:1205.2211].
[38] Essler, FHL; Evangelisti, S.; Fagotti, M., Dynamical correlations after a quantum quench, Phys. Rev. Lett., 109, 247206 (2012) · doi:10.1103/PhysRevLett.109.247206
[39] Collura, M.; Sotiriadis, S.; Calabrese, P., Equilibration of a Tonks-Girardeau gas following a trap release, Phys. Rev. Lett., 110, 245301 (2013) · doi:10.1103/PhysRevLett.110.245301
[40] Heyl, M.; Polkovnikov, A.; Kehrein, S., Dynamical quantum phase transitions in the transverse-field Ising model, Phys. Rev. Lett., 110, 135704 (2013) · doi:10.1103/PhysRevLett.110.135704
[41] Bucciantini, L.; Kormos, M.; Calabrese, P., Quantum quenches from excited states in the Ising chain, J. Phys., A 47, 175002 (2014) · Zbl 1291.82067
[42] M. Kormos, M. Collura and P. Calabrese, Analytic results for a quantum quench from free to hard-core one dimensional bosons, Phys. Rev.A 89 (2014) 013609 [arXiv:1307.2142] [INSPIRE]. · Zbl 1456.82040
[43] S. Sotiriadis and P. Calabrese, Validity of the GGE for quantum quenches from interacting to noninteracting models, J. Stat. Mech.1407 (2014) P07024 [arXiv:1403.7431] [INSPIRE]. · Zbl 1456.82024
[44] S. Sotiriadis, Memory-preserving equilibration after a quantum quench in a one-dimensional critical model, Phys. Rev.A 94 (2016) 031605 [arXiv:1507.07915] [INSPIRE].
[45] M. Collura, M. Kormos and P. Calabrese, Quantum quench in a harmonically trapped one-dimensional Bose gas, Phys. Rev.A 97 (2018) 033609 [arXiv:1710.11615]. · Zbl 1456.81113
[46] Caux, J-S; Essler, FHL, Time evolution of local observables after quenching to an integrable model, Phys. Rev. Lett., 110, 257203 (2013) · doi:10.1103/PhysRevLett.110.257203
[47] J.D. Nardis, L. Piroli and J.-S. Caux, Relaxation dynamics of local observables in integrable systems, J. Phys.A 48 (2015) 43FT01 [arXiv:1505.03080]. · Zbl 1330.82041
[48] D. Schuricht and F.H.L. Essler, Dynamics in the Ising field theory after a quantum quench, J. Stat. Mech.1204 (2012) P04017 [arXiv:1203.5080] [INSPIRE].
[49] B. Bertini, D. Schuricht and F.H.L. Essler, Quantum quench in the sine-Gordon model, J. Stat. Mech.1410 (2014) P10035 [arXiv:1405.4813] [INSPIRE]. · Zbl 1456.81047
[50] K.K. Kozlowski and B. Pozsgay, Surface free energy of the open XXZ spin-1/2 chain, J. Stat. Mech.1205 (2012) P05021 [arXiv:1201.5884] [INSPIRE]. · Zbl 1456.82283
[51] J.D. Nardis, B. Wouters, M. Brockmann and J.-S. Caux, Solution for an interaction quench in the Lieb-Liniger Bose gas, Phys. Rev.A 89 (2014) 033601 [arXiv:1308.4310]. · Zbl 1301.81079
[52] Brockmann, M.; Wouters, B.; Fioretto, D.; Nardis, JD; Vlijm, R.; Caux, J-S, Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain, J. Stat. Mech., 12, 12009 (2014) · Zbl 1456.82233 · doi:10.1088/1742-5468/2014/12/P12009
[53] Brockmann, M.; Nardis, JD; Wouters, B.; Caux, J-S, A Gaudin-like determinant for overlaps of Néel and XXZ Bethe states, J. Phys., A 47, 145003 (2014) · Zbl 1290.82003
[54] B. Pozsgay, Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states, J. Stat. Mech.6 (2014) 06011 [arXiv:1309.4593]. · Zbl 1456.82313
[55] M. Brockmann, Overlaps of q-raised Néel states with XXZ Bethe states and their relation to the Lieb-Liniger Bose gas, J. Stat. Mech.5 (2014) 05006 [arXiv:1402.1471]. · Zbl 1456.82232
[56] Brockmann, M.; Nardis, JD; Wouters, B.; Caux, J-S, Néel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit, J. Phys., A 47, 345003 (2014) · Zbl 1301.81079
[57] L. Piroli, P. Calabrese and F.H. Essler, Multiparticle bound-state formation following a quantum quench to the one-dimensional Bose gas with attractive interactions, Phys. Rev. Lett.116 (2016) 070408 [arXiv:1509.08234].
[58] M. Mestyán, B. Bertini, L. Piroli and P. Calabrese, Exact solution for the quench dynamics of a nested integrable system, J. Stat. Mech.1708 (2017) 083103 [arXiv:1705.00851] [INSPIRE]. · Zbl 1457.82214
[59] B. Pozsgay, Overlaps with arbitrary two-site states in the XXZ spin chain, J. Stat. Mech.1805 (2018) 053103 [arXiv:1801.03838] [INSPIRE]. · Zbl 1459.82078
[60] Leeuw, M.; Kristjansen, C.; Zarembo, K., One-point functions in defect CFT and integrability, JHEP, 08, 098 (2015) · Zbl 1388.81228 · doi:10.1007/JHEP08(2015)098
[61] O. Foda and K. Zarembo, Overlaps of partial Néel states and Bethe states, J. Stat. Mech.1602 (2016) 023107 [arXiv:1512.02533] [INSPIRE]. · Zbl 1456.82259
[62] Buhl-Mortensen, I.; Leeuw, M.; Kristjansen, C.; Zarembo, K., One-point functions in AdS/dCFT from matrix product states, JHEP, 02, 052 (2016) · Zbl 1388.81499 · doi:10.1007/JHEP02(2016)052
[63] Leeuw, M.; Kristjansen, C.; Mori, S., AdS/dCFT one-point functions of the SU(3) sector, Phys. Lett., B 763, 197 (2016) · Zbl 1370.81150 · doi:10.1016/j.physletb.2016.10.044
[64] Piroli, L.; Pozsgay, B.; Vernier, E., What is an integrable quench?, Nucl. Phys., B 925, 362 (2017) · Zbl 1375.81191 · doi:10.1016/j.nuclphysb.2017.10.012
[65] Pozsgay, B.; Piroli, L.; Vernier, E., Integrable matrix product states from boundary integrability, SciPost Phys., 6, 062 (2019) · doi:10.21468/SciPostPhys.6.5.062
[66] Sotiriadis, S.; Takács, G.; Mussardo, G., Boundary state in an integrable quantum field theory out of equilibrium, Phys. Lett., B 734, 52 (2014) · doi:10.1016/j.physletb.2014.04.058
[67] Horváth, DX; Sotiriadis, S.; Takács, G., Initial states in integrable quantum field theory quenches from an integral equation hierarchy, Nucl. Phys., B 902, 508 (2016) · Zbl 1332.81120 · doi:10.1016/j.nuclphysb.2015.11.025
[68] Horváth, DX; Kormos, M.; Takács, G., Overlap singularity and time evolution in integrable quantum field theory, JHEP, 08, 170 (2018) · Zbl 1396.81128 · doi:10.1007/JHEP08(2018)170
[69] Horváth, DX; Takács, G., Overlaps after quantum quenches in the sine-Gordon model, Phys. Lett. B, 771, 539 (2017) · Zbl 1372.81109 · doi:10.1016/j.physletb.2017.05.087
[70] Hódsági, K.; Kormos, M.; Takács, G., Quench dynamics of the Ising field theory in a magnetic field, SciPost Phys., 5, 027 (2018) · doi:10.21468/SciPostPhys.5.3.027
[71] Sotiriadis, S.; Fioretto, D.; Mussardo, G., Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories, J. Stat. Mech., 1202, p02017 (2012) · Zbl 1456.81254
[72] Mussardo, G., Infinite-time average of local fields in an integrable quantum field theory after a quantum quench, Phys. Rev. Lett., 111, 100401 (2013) · doi:10.1103/PhysRevLett.111.100401
[73] Schuricht, D., Quantum quenches in integrable systems: constraints from factorisation, J. Stat. Mech., 1511, p11004 (2015) · Zbl 1456.82075 · doi:10.1088/1742-5468/2015/11/P11004
[74] Cortés Cubero, A.; Mussardo, G.; Panfil, M., Quench dynamics in two-dimensional integrable SUSY models, J. Stat. Mech., 1603, 033115 (2016) · Zbl 1456.81425 · doi:10.1088/1742-5468/2016/03/033115
[75] Bertini, B.; Piroli, L.; Calabrese, P., Quantum quenches in the sinh-Gordon model: steady state and one point correlation functions, J. Stat. Mech., 1606, 063102 (2016) · Zbl 1456.81226 · doi:10.1088/1742-5468/2016/06/063102
[76] Cortés Cubero, A., Planar quantum quenches: computation of exact time-dependent correlation functions at large N, J. Stat. Mech., 1608, 083107 (2016) · Zbl 1457.82131 · doi:10.1088/1742-5468/2016/08/083107
[77] Essler, FHL; Mussardo, G.; Panfil, M., On truncated generalized Gibbs ensembles in the Ising field theory, J. Stat. Mech., 1701, 013103 (2017) · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[78] Delfino, G., Quantum quenches with integrable pre-quench dynamics, J. Phys., A 47, 402001 (2014) · Zbl 1300.81027
[79] G. Delfino and J. Viti, On the theory of quantum quenches in near-critical systems, J. Phys.A 50 (2017) 084004 [arXiv:1608.07612] [INSPIRE]. · Zbl 1361.82023
[80] A.B. Zamolodchikov, Integrals of motion and S matrix of the (scaled) T = T_cIsing model with magnetic field, Int. J. Mod. Phys.A 4 (1989) 4235 [INSPIRE].
[81] Rakovszky, T.; Mestyán, M.; Collura, M.; Kormos, M.; Takács, G., Hamiltonian truncation approach to quenches in the Ising field theory, Nuclear Physics B, 911, 805-845 (2016) · Zbl 1346.82021
[82] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys.A 9 (1994) 3841 [Erratum ibid.A 9 (1994) 4353] [hep-th/9306002] [INSPIRE]. · Zbl 0985.81714
[83] Cortés Cubero, A.; Schuricht, D., Quantum quench in the attractive regime of the sine-Gordon model, J. Stat. Mech., 1710, 103106 (2017) · Zbl 1457.82208 · doi:10.1088/1742-5468/aa8c2e
[84] Pozsgay, B.; Takács, G., Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys., B 788, 167 (2008) · Zbl 1220.81161 · doi:10.1016/j.nuclphysb.2007.06.027
[85] Kormos, M.; Pozsgay, B., One-point functions in massive integrable QFT with boundaries, JHEP, 04, 112 (2010) · Zbl 1272.81107 · doi:10.1007/JHEP04(2010)112
[86] Pozsgay, B.; Takács, G., Form factors in finite volume II: Disconnected terms and finite temperature correlators, Nuclear Physics B, 788, 209-251 (2008) · Zbl 1220.81162
[87] Delfino, G.; Mussardo, G.; Simonetti, P., Nonintegrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B, 473, 469 (1996) · Zbl 0925.81296 · doi:10.1016/0550-3213(96)00265-9
[88] V.A. Fateev, The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories, Phys. Lett.B 324 (1994) 45 [INSPIRE].
[89] V.A. Fateev and A.B. Zamolodchikov, Conformal field theory and purely elastic S matrices, Int. J. Mod. Phys.A 5 (1990) 1025 [INSPIRE]. · Zbl 0737.17014
[90] Smirnov, FA, Form factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys., 14, 1 (1992) · Zbl 0788.46077 · doi:10.1142/9789812798312_0001
[91] Delfino, G.; Grinza, P.; Mussardo, G., Decay of particles above threshold in the Ising field theory with magnetic field, Nucl. Phys. B, 737, 291 (2006) · Zbl 1109.82310 · doi:10.1016/j.nuclphysb.2005.12.024
[92] Ising form factors, https://people.sissa.it/∼delfino/isingff.html.
[93] Yurov, VP; Zamolodchikov, AB, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A, 5, 3221 (1990) · doi:10.1142/S0217751X9000218X
[94] Yurov, VP; Zamolodchikov, AB, Truncated fermionic space approach to the critical 2D Ising model with magnetic field, Int. J. Mod. Phys. A, 6, 4557 (1991) · doi:10.1142/S0217751X91002161
[95] Kormos, M., Boundary renormalisation group flows of the supersymmetric Lee-Yang model and its extensions, Nucl. Phys., B 772, 227 (2007) · Zbl 1117.81098 · doi:10.1016/j.nuclphysb.2007.02.028
[96] James, AJA; Konik, RM; Lecheminant, P.; Robinson, NJ; Tsvelik, AM, Non-perturbative methodologies for low-dimensional strongly-correlated systems: from non-Abelian bosonization to truncated spectrum methods, Rept. Prog. Phys., 81, 046002 (2018) · doi:10.1088/1361-6633/aa91ea
[97] Lencsés, M.; Takács, G., Confinement in the q-state Potts model: an RG-TCSA study, JHEP, 09, 146 (2015) · doi:10.1007/JHEP09(2015)146
[98] Lencsés, M.; Viti, J.; Takács, G., Chiral entanglement in massive quantum field theories in 1 + 1 dimensions, JHEP, 01, 177 (2019) · Zbl 1409.81126 · doi:10.1007/JHEP01(2019)177
[99] Lieb, EH; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Annals Phys., 16, 407 (1961) · Zbl 0129.46401 · doi:10.1016/0003-4916(61)90115-4
[100] P. Pfeuty, The one-dimensional Ising model with a transverse field, Annals Phys.57 (1970) 79.
[101] McCoy, BM; Wu, TT, Two-dimensional Ising field theory in a magnetic field: breakup of the cut in the two point function, Phys. Rev., D 18, 1259 (1978)
[102] P. Fonseca and A. Zamolodchikov, Ising spectroscopy I: mesons at T < T_c, hep-th/0612304 [INSPIRE].
[103] A. Zamolodchikov, Ising spectroscopy II: particles and poles at T > T_c, arXiv:1310.4821 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.