×

An interface-regularizing model for compressible three-fluid flows with interfacial tensions. (English) Zbl 1521.76496

Summary: We present a diffuse-interface model for simulating compressible three-fluid flows with surface tension. In this model different fluids are separated with resolved interfaces. We first deduce the jump conditions across the material interfaces under surface tension. The interfaces are represented with the advection equations for volume fractions. Traditional methods for solving these equations result in serious numerical smearing of interface surfaces. To minimize this numerical effect, we introduce mathematical regularization of the governing equations by implementing an artificial compression method. The mathematical regularization is introduced in such a way that the jump conditions across the material interface maintain unaltered. Further we demonstrate that for the three-fluid formulation the direct implementation of the artificial compression method for each volume fraction can violate the non-negativity constraints for volume fractions. To cope with this problem, we propose a simple and robust method to ensure the volume fraction constraints. In this method instead of the original advection equations for volume fractions, we solve the advection equation with an additional compression term for new characteristic functions in the form of non-linear combinations of volume fractions. Moreover, a HLLC solver for solving the model equations is developed. The numerical results of several benchmark problems display the efficiency of the proposed algorithm.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
68U07 Computer science aspects of computer-aided design
76Nxx Compressible fluids and gas dynamics

Software:

HE-E1GODF; ReALE
Full Text: DOI

References:

[1] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J Comput Phys, 181, 2, 577-616 (2002) · Zbl 1169.76407
[2] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int J Multiphase Flow, 12, 6, 861-889 (1986) · Zbl 0609.76114
[3] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354 (1992) · Zbl 0775.76110
[4] Breil, J.; Harribey, T.; Maire, P.-H.; Shashkov, M., A multi-material ReALE method with MOF interface reconstruction, Comput Fluids, 83, 115-125 (2013) · Zbl 1290.76094
[5] Einfeldt, B.; Munz, C. D.; Roe, P. L., On Godunov-type methods near low densities, J Comput Phys, 92, 2, 273-295 (1991) · Zbl 0709.76102
[6] Garrick, D. P.; Owkes, M.; Regele, J. D., A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension, J Comput Phys, 339, 46-67 (2017) · Zbl 1375.76099
[7] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K.-m.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J Sci Comput, 19, 3, 703-727 (1998) · Zbl 0912.65075
[8] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat Sb (NS), 47(89), 3, 271-306 (1959) · Zbl 0171.46204
[9] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J Comput Phys, 152, 2, 423-456 (1999) · Zbl 0954.76063
[10] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J Comput Phys, 14, 3, 227-253 (1974) · Zbl 0292.76018
[11] Hérard, J.-M., A three-phase flow model, Math Comput Model, 45, 5, 732-755 (2007) · Zbl 1165.76382
[12] Igra, D.; Takayama, K., Experimental investigation of two cylindrical water columns subjected to planar shock wave loading, J Fluids Eng, 125, 2, 325-331 (2003)
[13] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials:reduced equations, Phys Fluids, 13, 10, 3002-3024 (2001) · Zbl 1184.76268
[14] Kim, J.; Lowengrub, J., Phase field modeling and simulation of three-phase flows, Interfaces Free Bound, 7, 4, 435-466 (2005) · Zbl 1100.35088
[15] LeVeque, R. J., Finite volume methods for hyperbolic problems, 31 (2002), Cambridge university press · Zbl 1010.65040
[16] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J Comput Phys, 202, 2, 664-698 (2005) · Zbl 1061.76083
[17] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J Comput Phys, 210, 1, 225-246 (2005) · Zbl 1154.76368
[18] Olsson, E.; Kreiss, G.; Zahedia, S., A conservative level set method for two phase flow, J Comput Phys, 225, 1, 785-807 (2007) · Zbl 1256.76052
[19] Peery, J. S.; Carroll, D. E., Multi-material ALE methods in unstructured grids, Comput Methods Appl Mech Eng, 187, 3, 591-619 (2000) · Zbl 0980.74068
[20] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, J Comput Phys, 209, 1, 139-178 (2005) · Zbl 1329.76301
[21] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J Comput Phys, 150, 2, 425-467 (1999) · Zbl 0937.76053
[22] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J Sci Comput, 21, 3, 1115-1145 (1999) · Zbl 0957.76057
[23] Schmidmayer, K.; Petitpas, F.; Daniel, E.; Favrie, N.; Gavrilyuk, S., A model and numerical method for compressible flows with capillary effects, J Comput Phys, 334, 468-496 (2017) · Zbl 1375.76198
[24] Shi, Y.; Tang, G.; Wang, Y., Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver, J Comput Phys, 314, 228-243 (2016) · Zbl 1349.76733
[25] Shukla, R. K., Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows, J Comput Phys, 276, 276, 508-540 (2014) · Zbl 1349.65110
[26] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J Comput Phys, 229, 19, 7411-7439 (2010) · Zbl 1425.76289
[27] Shyue, K. M.; Xiao, F., An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J Comput Phys, 268, 2, 326-354 (2014) · Zbl 1349.76388
[28] Smith, K.; Sons, F.; Chopp, D., A projection method for motion of triple junctions by level sets, Interfaces Free Bound, 4, 3, 263-276 (2002) · Zbl 1112.76437
[29] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J Comput Phys, 231, 11, 4304-4323 (2012) · Zbl 1426.76428
[30] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J Comput Phys, 228, 11, 4012-4037 (2009) · Zbl 1171.76046
[31] Tiwari, A.; Freund, J. B.; Pantano, C., A diffuse interface model with immiscibility preservation, J Comput Phys, 252, C, 290-309 (2013) · Zbl 1349.76395
[32] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction (2013), Springer Science & Business Media
[33] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 1, 25-37 (1992) · Zbl 0758.76047
[34] Zhang, C.; Menshov, I., A sharp diffuse-interface approach to compressible multi-fluid flows, (Roger Owen, J. R.; René de, B.; Pearce, C., Proceedings 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 11-15 June (2018), Glasgow, UK.), 3085-3096
[35] Zhang, C.; Menshov, I., Eulerian modelling of compressible three-fluid flows with surface tension, Russian J Numer Anal Math Model, 4, 225-240 (2019) · Zbl 1421.76200
[36] Zhang, C.; Menshov, I., Eulerian model for simulating multi-fluid flows with an arbitrary number of immiscible compressible components, J Sci Comput, 83, 1-33 (2020) · Zbl 1434.76143
[37] Zhang, C.; Menshov, I. S., Interface-capturing method for calculating the transport equations for a multicomponent heterogeneous system on fixed Eulerian grids (in Russian), Mat Model, 31, 4, 111-130 (2019) · Zbl 1449.76035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.