×

Construction of modern robust nodal discontinuous Galerkin spectral element methods for the compressible Navier-Stokes equations. (English) Zbl 1472.76066

Kronbichler, Martin (ed.) et al., Efficient high-order discretizations for computational fluid dynamics. Selected papers based on the presentations at the summer school, Udine, Italy, July 16–20, 2018. Cham: Springer. CISM Courses Lect. 602, 117-196 (2021).
Summary: Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.
For the entire collection see [Zbl 1468.76003].

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations

References:

[1] Abarbanel, S.; Gottlieb, D., Optimal time splitting for two-and three-dimensional Navier-Stokes equations with mixed derivatives, Journal of Computational Physics, 41, 1, 1-33 (1981) · Zbl 0467.76062 · doi:10.1016/0021-9991(81)90077-2
[2] Altmann, C., Beck, A. D., Hindenlang, F., Staudenmaier, M., Gassner, G. J., & Munz, C.-D. (2013). An efficient high performance parallelization of a discontinuous Galerkin spectral element method. In Keller, R., Kramer, D., & Weiss, J-P. (eds.), Facing the Multicore-Challenge III, Lecture Notes in Computer Science, (pp. 37-47, vo. 7686). Berlin: Springer. ISBN 978-3-642-35892-0.
[3] Baggag, A., Atkins, H., & Keyes, D. (2000). Parallel implementation of the discontinuous Galerkin method. In Parallel computational fluid dynamics: Towards teraflops, optimization, and novel formulations, (pp. 115-122).
[4] Barth, T. J. (1999). Numerical methods for gasdynamic systems on unstructured meshes. In Dietmar Kröner, Mario Ohlberger, & Christian Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (Vol. 5, pp. 195-285)., Lecture Notes in Computational Science and Engineering Berlin Heidelberg: Springer. · Zbl 0969.76040
[5] Bassi, F.; Rebay, S., A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, Journal of Computational Physics, 131, 267-279 (1997) · Zbl 0871.76040 · doi:10.1006/jcph.1996.5572
[6] B. Biswas and H. Kumar. Entropy stable discontinuous Galerkin approximation for the relativistic hydrodynamic equations. arXiv preprintarXiv:1911.07488, 2019.
[7] Black, K., A conservative spectral element method for the approximation of compressible fluid flow, Kybernetika, 35, 1, 133-146 (1999) · Zbl 1274.76271
[8] Black, K., Spectral element approximation of convection-diffusion type problems, Applied Numerical Mathematics, 33, 1-4, 373-379 (2000) · Zbl 0964.65104 · doi:10.1016/S0168-9274(99)00104-X
[9] Bohm, M., Winters, A. R., Gassner, G. J., Derigs, D., Hindenlang, F., & Saur, J. (2018). An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification. Journal of Computational Physics. doi:10.1016/j.jcp.2018.06.027.
[10] Bonev, B.; Hesthaven, JS; Giraldo, FX; Kopera, MA, Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction, Journal of Computational Physics, 362, 425-448 (2018) · Zbl 1391.76305 · doi:10.1016/j.jcp.2018.02.008
[11] Canuto, C.; Quarteroni, A., Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, 38, 157, 67-86 (1982) · Zbl 0567.41008 · doi:10.1090/S0025-5718-1982-0637287-3
[12] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Berlin: Springer, Berlin · Zbl 1121.76001 · doi:10.1007/978-3-540-30728-0
[13] Carlson, BC, The logarithmic mean, The American Mathematical Monthly, 79, 6, 615-618 (1972) · Zbl 0241.33001 · doi:10.1080/00029890.1972.11993095
[14] Carpenter, M.; Fisher, T.; Nielsen, E.; Frankel, S., Entropy stable spectral collocation schemes for the Navier-Stokes equations: Discontinuous interfaces, SIAM Journal on Scientific Computing, 36, 5, B835-B867 (2014) · Zbl 1457.65140 · doi:10.1137/130932193
[15] Chan, J., On discretely entropy conservative and entropy stable discontinuous Galerkin methods, Journal of Computational Physics, 362, 346-374 (2018) · Zbl 1391.76310 · doi:10.1016/j.jcp.2018.02.033
[16] Chan, J.; Hewett, RJ; Warburton, T., Weight-adjusted discontinuous Galerkin methods: wave propogation in heterogeneous media, SIAM Journal on Scientific Computing, 39, 6, A2935-A2961 (2017) · Zbl 1379.65075 · doi:10.1137/16M1089186
[17] Chan, J.; Del Rey Fernández, DC; Carpenter, MH, Efficient entropy stable Gauss collocation methods, SIAM Journal on Scientific Computing, 41, 5, A2938-A2966 (2019) · Zbl 1435.65172 · doi:10.1137/18M1209234
[18] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Communications in Computational Physics, 14, 1252-1286, 11 (2013) · Zbl 1373.76121
[19] Chen, T.; Shu, C-W, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, Journal of Computational Physics, 345, 427-461 (2017) · Zbl 1380.65253 · doi:10.1016/j.jcp.2017.05.025
[20] Cockburn, B.; Shu, CW, The Runge-Kutta local projection \({P}^1\)-discontinuous Galerkin method for scalar conservation laws, Rairo-Matehmatical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique, 25, 337-361 (1991) · Zbl 0732.65094 · doi:10.1051/m2an/1991250303371
[21] Cockburn, B.; Shu, C-W, The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, Journal of Computational Physics, 141, 2, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[22] Cockburn, B.; Shu, C-W, The local discontinuous Galerkin method for time-dependent convection diffusion systems, SIAM Journal on Numerical Analysis, 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[23] Cockburn, B., Hou, S., & Shu, C.-W. (1990). The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case. Mathematics of Computation, 54(190), 545-581. · Zbl 0695.65066
[24] Cockburn, B., Karniadakis, G. E., Shu, C-W. (2000). The development of discontinuous Galerkin methods. In Cockburn, B., Karniadakis, G., & Shu, C.-W. (eds.), Proceedings of the international symposium on discontinuous galerkin methods, (pp. 3-50), New York: Springer. · Zbl 0989.76045
[25] Crean, J.; Hicken, JE; Del Rey Fernández, DC; Zingg, DW; Carpenter, MH, Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, Journal of Computational Physics, 356, 410-438 (2018) · Zbl 1380.76080 · doi:10.1016/j.jcp.2017.12.015
[26] Dalcin, L.; Rojas, D.; Zampini, S.; Del Rey Fernández, DC; Carpenter, MH; Parsani, M., Conservative and entropy stable solid wall boundary conditions for the compressible Navier-Stokes equations: Adiabatic wall and heat entropy transfer, Journal of Computational Physics, 397, 108775 (2019) · Zbl 1453.76068 · doi:10.1016/j.jcp.2019.06.051
[27] Deng, S. (2007). Numerical simulation of optical coupling and light propagation in coupled optical resonators with size disorder. Applied Numerical Mathematics, 57(5-7), 475-485. ISSN 0168-9274. · Zbl 1190.78008
[28] Deng, S.Z., Cai, W., & Astratov, V.N. (2004) Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides. Optics Express, 12(26), 6468-6480, DEC 27 2004. ISSN 1094-4087.
[29] Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., & Caruelle, B. (2000). High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows. Journal of Computational Physics, 161, 114-139. · Zbl 0972.76066
[30] Dutt, P. (1988). Stable boundary conditions and difference schemes for Navier-Stokes equations. SIAM Journal on Numerical Analysis, 25, 245-267. · Zbl 0701.76032
[31] Evans, L. C. (2012). Partial differential equations. American Mathematical Society.
[32] Fagherazzi, S.; Furbish, DJ; Rasetarinera, P.; Hussaini, MY, Application of the discontinuous spectral Galerkin method to groundwater flow, Advances in Water Resourses, 27, 129-140 (2004) · doi:10.1016/j.advwatres.2003.11.001
[33] Fagherazzi, S., Rasetarinera, P., Hussaini, M. Y., & Furbish, D. J. (2004b). Numerical solution of the dam-break problem with a discontinuous Galerkin method. Journal of Hydraulic Engineering, 130(6), 532-539. June.
[34] Farrashkhalvat, M., & Miles, J. P. (2003). Basic Structured Grid Generation: With an introduction to unstructured grid generation. Butterworth-Heinemann.
[35] Fisher, T.; Carpenter, MH; Nordström, J.; Yamaleev, NK; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions, Journal of Computational Physics, 234, 353-375 (2013) · Zbl 1284.65102 · doi:10.1016/j.jcp.2012.09.026
[36] Fisher, T. C. (2012). High-order \(L_2\) stable multi-domain finite difference method for compressible flows. Ph.D. thesis, Purdue University.
[37] Fisher, TC; Carpenter, MH, High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains, Journal of Computational Physics, 252, 518-557 (2013) · Zbl 1349.65293 · doi:10.1016/j.jcp.2013.06.014
[38] Fjordholm, US; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontiuous topography, Journal of Computational Physics, 230, 14, 5587-5609 (2011) · Zbl 1452.35149 · doi:10.1016/j.jcp.2011.03.042
[39] Flad, D.; Gassner, G., On the use of kinetic energy preservaing DG-scheme for large eddy simulation, Journal of Computational Physics, 350, 782-795 (2017) · Zbl 1380.76019 · doi:10.1016/j.jcp.2017.09.004
[40] Flad, D.; Beck, A.; Guthke, P., A large eddy simulation method for DGSEM using non-linearly optimized relaxation filters, Journal of Computational Physics, 408, 109303 (2020) · Zbl 07505626 · doi:10.1016/j.jcp.2020.109303
[41] Friedrich, L.; Winters, AR; Del Rey Fernández, GJ; Gassner, DC; Parsani, M.; Carpenter, MH, An entropy stable \(h/p\) non-conforming discontinuous Galerkin method with the summation-by-parts property, Journal of Scientific Computing, 77, 2, 689-725 (2018) · Zbl 1407.65185 · doi:10.1007/s10915-018-0733-7
[42] Friedrich, L.; Schnücke, G.; Winters, AR; Del Rey Fernández, DC; Gassner, GJ; Carpenter, MH, Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws, Journal of Scientific Computing, 80, 1, 175-222 (2019) · Zbl 1421.35262 · doi:10.1007/s10915-019-00933-2
[43] Gassner, G., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM Journal on Scientific Computing, 35, 3, A1233-A1253 (2013) · Zbl 1275.65065 · doi:10.1137/120890144
[44] Gassner, G.; Kopriva, DA, A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM Journal on Scientific Computing, 33, 5, 2560-2579 (2010) · Zbl 1255.65089 · doi:10.1137/100807211
[45] Gassner, G. J., & Winters, A. R. (2019). A novel robust strategy for discontinuous Galerkin methods in computational physics: Why? When? What? Where? Submitted to Frontiers in Physics.
[46] Gassner, GJ; Winters, AR; Kopriva, DA, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Applied Mathematics and Computation, 272, Part, 2, 291-308 (2016) · Zbl 1410.65393
[47] Gassner, GJ; Winters, AR; Kopriva, DA, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, Journal of Computational Physics, 327, 39-66 (2016) · Zbl 1422.65280 · doi:10.1016/j.jcp.2016.09.013
[48] Gassner, GJ; Winters, AR; Hindenlang, FJ; Kopriva, DA, The BR1 scheme is stable for the compressible Navier-Stokes equations, Journal of Scientific Computing, 77, 1, 154-200 (2018) · Zbl 1407.65189 · doi:10.1007/s10915-018-0702-1
[49] Geuzaine, C.; Remacle, J-F, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[50] Giraldo, FX; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases, Journal of Computational Physics, 227, 8, 3849-3877 (2008) · Zbl 1194.76189 · doi:10.1016/j.jcp.2007.12.009
[51] Giraldo, FX; Hesthaven, JS; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, Journal of Computational Physics, 181, 2, 499-525 (2002) · Zbl 1178.76268 · doi:10.1006/jcph.2002.7139
[52] Gordon, WJ; Hall, CA, Construction of curvilinear co-ordinate systems and their applications to mesh generation, International Journal for Numerical Methods in Engineering Engineering, 7, 461-477 (1973) · Zbl 0271.65062 · doi:10.1002/nme.1620070405
[53] Gottlieb, D., & Orszag, S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CMBS. · Zbl 0412.65058
[54] Harten, A. (1983). On the symmetric form of systems of conservation laws with entropy. Journal of Computational Physics, 49, 151-164. · Zbl 0503.76088
[55] Hennemann, S., & Gassner, G. J. (2020). A provably entropy stable subcell shock capturing approach for high order split form DG. Submitted to Journal of Computational Physics.
[56] Hesthaven, J. S., & Warburton, T. (2008). Nodal discontinuous galerkin methods. Springer. · Zbl 1134.65068
[57] Hicken, J. E., Fernández, D. C. D. R., & Zingg, D. W. (2016). Multidimensional summation-by-parts operators: General theory and application to simplex elements. SIAM Journal on Scientific Computing, 38(4), A1935-A1958. · Zbl 1382.65355
[58] Hindenlang, F. (2014). Mesh curving techniques for high order parallel simulations on unstructured meshes. Ph.D. thesis, University of Stuttgart.
[59] Hindenlang, F.; Gassner, GJ; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C-D, Explicit discontinuous Galerkin methods for unsteady problems, Computers and Fluids, 61, 86-93 (2012) · Zbl 1365.76117 · doi:10.1016/j.compfluid.2012.03.006
[60] Hindenlang, F. J., Gassner, G. J., Kopriva, D. A. (2019). Stability of wall boundary condition procedures for discontinuous Galerkin spectral element approximations of the compressible Euler equations. arXiv:1901.04924.
[61] Hu, F. Q., Hussaini, M. Y., & Rasetarinera, P. (1999). An analysis of the discontinuous Galerkin method for wave propagation problems. Journal of Computational Physics, 151(2), 921-946. · Zbl 0933.65113
[62] Ismail, F., & Roe, P. L. (2009). Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. Journal of Computational Physics, 228(15), 5410-5436. · Zbl 1280.76015
[63] Karniadakis, G. E., & Sherwin, S. J. (2005). Spectral/hp element methods for computational fluid dynamics. Oxford University Press. · Zbl 1116.76002
[64] Kennedy, CA; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, Journal of Computational Physics, 227, 1676-1700 (2008) · Zbl 1290.76135 · doi:10.1016/j.jcp.2007.09.020
[65] Knupp, P. M., Steinberg, S. (1993). Fundamentals of grid generation. CRC-Press. · Zbl 0855.65123
[66] Kopriva, DA, Metric identities and the discontinuous spectral element method on curvilinear meshes, Journal of Scientific Computing, 26, 3, 301-327 (2006) · Zbl 1178.76269 · doi:10.1007/s10915-005-9070-8
[67] Kopriva, D. A. (2009). Implementing spectral methods for partial differential equations. Scientific computation. · Zbl 1172.65001
[68] Kopriva, DA; Gassner, GJ, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems, SIAM Journal on Scientific Computing, 34, 4, A2076-A2099 (2014) · Zbl 1303.65086 · doi:10.1137/130928650
[69] Kopriva, D. A., Woodruff, S. L., & Hussaini, M. Y. (2000). Discontinuous spectral element approximation of Maxwell’s Equations. In Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.), Proceedings of the international symposium on discontinuous Galerkin methods (pp. 355-361), New York: Springer. · Zbl 0957.78023
[70] Kopriva, DA; Woodruff, SL; Hussaini, MY, Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, International Journal for Numerical Methods in Engineering, 53, 1, 105-122 (2002) · Zbl 0994.78020 · doi:10.1002/nme.394
[71] Kopriva, DA; Winters, AR; Bohm, M.; Gassner, GJ, A provably stable discontinuous Galerkin spectral element approximation for moving hexahedral meshes, Computers & Fluids, 139, 148-160 (2016) · Zbl 1390.76653 · doi:10.1016/j.compfluid.2016.05.023
[72] Kopriva, DA; Hindenlang, FJ; Bolemann, T.; Gassner, GJ, Free-stream preservation for curved geometrically non-conforming discontinuous Galerkin spectral elements, Journal of Scientific Computing, 79, 3, 1389-1408 (2019) · Zbl 1448.76111 · doi:10.1007/s10915-018-00897-9
[73] Krais, N. Schnücke, G., Bolemann, T., & Gassner, G. (2020). Split form ALE discontinuous Galerkin methods with applications to under-resolved turbulent low-Mach number flows. arXiv:2003.02296. · Zbl 1437.65142
[74] Kreiss, H.-O., Oliger, J. (1973). Methods for the approximate solution of time-dependent problems. World Meteorological Organization, Geneva, 1973. GARP Rept. No.10.
[75] Kreiss, H-O; Olliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215 (1972) · doi:10.3402/tellusa.v24i3.10634
[76] Kreiss, H.-O., Scherer, G. (1974). Finite element and finite difference methods for hyperbolic partial differential equations. In Mathematical aspects of finite elements in partial differential equations (pp. 195-212). Elsevier. · Zbl 0355.65085
[77] Kreiss, H.-O., Scherer, G. (1977). On the existence of energy estimates for difference approximations for hyperbolic systems. Technical report, Deptpartment of Scientific Computing, Uppsala University.
[78] Lax, PD, Weak solutions of nonlinear hyperbolic conservation equations and their numerical computation, Communications on Pure and Applied Mathematics, 7, 1, 159-193 (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[79] Lax, PD, Hyperbolic difference equations: A review of the Courant-Friedrichs-Lewy paper in the light of recent developments, IBM Journal of Reseach and Development, 11, 2, 235-238 (1967) · Zbl 0233.65051 · doi:10.1147/rd.112.0235
[80] LeFloch, P.; Rohde, C., High-order schemes, entropy inequalities, and nonclassical shocks, SIAM Journal on Numerical Analysis, 37, 6, 2023-2060 (2000) · Zbl 0959.35117 · doi:10.1137/S0036142998345256
[81] LeVeque, R. J. (2020) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. · Zbl 1010.65040
[82] Liu, Y.; Shu, C-W; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, Journal of Computational Physics, 354, 163-178 (2018) · Zbl 1380.76162 · doi:10.1016/j.jcp.2017.10.043
[83] Manzanero, J., Ferrer, E., Rubio, G., & Valero, E. (2020a) Design of a Smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods. Computers & Fluids, 104440. · Zbl 1519.76095
[84] Manzanero, J.; Rubio, G.; Kopriva, DA; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, Journal of Computational Physics, 408, 109241 (2020) · Zbl 07505602 · doi:10.1016/j.jcp.2020.109241
[85] Manzanero, J., Rubio, G., Kopriva, D. A., Ferrer, E., & Valero, E. (2020c) Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system. Journal of Computational Physics, 109363. · Zbl 1453.65338
[86] Manzanero, J.; Rubio, G.; Kopriva, DA; Ferrer, E.; Valero, E., A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation, Journal of Computational Physics, 403, 109072 (2020) · Zbl 1453.65338 · doi:10.1016/j.jcp.2019.109072
[87] Merriam, ML, Smoothing and the second law, Computer Methods in Applied Mechanics and Engineering, 64, 1-3, 177-193 (1987) · Zbl 0607.76008 · doi:10.1016/0045-7825(87)90039-9
[88] Merriam, ML, An entropy-based approach to nonlinear stability, NASA Technical Memorandum, 101086, 64, 1-154 (1989)
[89] Nitsche, JA, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36, 9-15 (1971) · Zbl 0229.65079 · doi:10.1007/BF02995904
[90] Nordström, J.; Svärd, M., Well-posed boundary conditions for the Navier-Stokes equations, SIAM Journal on Numerical Analysis, 43, 3, 1231-1255 (2005) · Zbl 1319.35163 · doi:10.1137/040604972
[91] Parsani, M.; Carpenter, MH; Nielsen, EJ, Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations, Journal of Computational Physics, 292, 88-113 (2015) · Zbl 1349.76639 · doi:10.1016/j.jcp.2015.03.026
[92] Pazner, W.; Persson, P-O, Analysis and entropy stability of the line-based discontinuous Galerkin method, Journal of Scientific Computing, 80, 1, 376-402 (2019) · Zbl 1418.65136 · doi:10.1007/s10915-019-00942-1
[93] Pirozzoli, S., Generalized conservative approximations of split convective derivative operators, Journal of Computational Physics, 229, 19, 7180-7190 (2010) · Zbl 1426.76485 · doi:10.1016/j.jcp.2010.06.006
[94] Ranocha, H., Comparison of some entropy conservative numerical fluxes for the Euler equations, Journal of Scientific Computing, 76, 1, 216-242 (2018) · Zbl 1397.65151 · doi:10.1007/s10915-017-0618-1
[95] Ranocha, H.; Sayyari, M.; Dalcin, L.; Parsani, M.; Ketcheson, DI, Relaxation Runge-Kutta methods: Fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations, SIAM Journal on Scientific Computing, 42, 2, A612-A638 (2020) · Zbl 1432.76207 · doi:10.1137/19M1263480
[96] Rasetarinera, P.; Hussaini, MY, An efficient implicit discontinuous spectral Galerkin method, Journal of Computational Physics, 172, 718-738 (2001) · Zbl 0986.65093 · doi:10.1006/jcph.2001.6853
[97] Rasetarinera, P.; Kopriva, DA; Hussaini, MY, Discontinuous spectral element solution of acoustic radiation from thin airfoils, AIAA Journal, 39, 11, 2070-2075 (2001) · doi:10.2514/2.1229
[98] Reed, W. H., & Hill, T. R. (1973) Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory.
[99] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, Journal of Computational Physics, 382, 1-26 (2019) · Zbl 1451.76073 · doi:10.1016/j.jcp.2018.12.035
[100] Restelli, M.; Giraldo, FX, A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling, SIAM Journal on Scientific Computing, 31, 3, 2231-2257 (2009) · Zbl 1405.65127 · doi:10.1137/070708470
[101] Roe, PL, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 135, 2, 250-258 (1997) · Zbl 0890.65094 · doi:10.1006/jcph.1997.5705
[102] Schnücke, G.; Krais, N.; Bolemann, T.; Gassner, GJ, Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws, Journal of Scientific Computing, 82, 3, 1-42 (2020) · Zbl 1437.65142 · doi:10.1007/s10915-020-01171-7
[103] Sjögreen, B.; Yee, HC; Kotov, D., Skew-symmetric splitting and stability of high order central schemes, Journal of Physics: Conference Series, 837, 1, 012019 (2017)
[104] Stanescu, D., Farassat, F., & Hussaini, M. Y. (2002a) Aircraft engine noise scattering - parallel discontinuous Galerkin spectral element method. Paper 2002-0800, AIAA.
[105] Stanescu, D.; Xu, J.; Farassat, F.; Hussaini, MY, Computation of engine noise propagation and scattering off an aircraft, Aeroacoustics, 1, 4, 403-420 (2002) · doi:10.1260/147547202765275989
[106] Strand, B. (1994). Summation by parts for finite difference approximations for \(d/dx\). Journal of Computational Physics, 110, · Zbl 0792.65011
[107] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, Journal of Computational Physics, 268, 17-38 (2014) · Zbl 1349.65336 · doi:10.1016/j.jcp.2014.02.031
[108] Tadmor, E., Skew-selfadjoint form for systems of conservation laws, Journal of Mathematical Analysis and Applications, 103, 2, 428-442 (1984) · Zbl 0599.35102 · doi:10.1016/0022-247X(84)90139-2
[109] Tadmor, E., Entropy functions for symmetric systems of conservation laws, Journal of Mathematical Analysis and Applications, 122, 2, 355-359 (1987) · Zbl 0624.35057 · doi:10.1016/0022-247X(87)90265-4
[110] Tadmor, E. (2003) Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica, 12, 451-512, 5 (2003). · Zbl 1046.65078
[111] Tadmor, E., Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws, Discrete and Continuous Dynamical Systems-A, 36, 8, 4579-4598 (2016) · Zbl 1332.65129 · doi:10.3934/dcds.2016.36.4579
[112] Tadmor, E.; Zhong, W., Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, Journal of Hyperbolic Differential Equations, 3, 3, 529-559 (2006) · Zbl 1331.76102 · doi:10.1142/S0219891606000896
[113] Wang, ZJ; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A., High-order CFD methods: current status and perspective, International Journal for Numerical Methods in Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007 · doi:10.1002/fld.3767
[114] Wilcox, LC; Stadler, G.; Burstedde, C.; Ghattas, O., A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, Journal of Computational Physics, 229, 24, 9373-9396 (2010) · Zbl 1427.74071 · doi:10.1016/j.jcp.2010.09.008
[115] Wintermeyer, N.; Winters, AR; Gassner, GJ; Kopriva, DA, An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, Journal of Computational Physics, 340, 200-242 (2017) · Zbl 1380.65291 · doi:10.1016/j.jcp.2017.03.036
[116] Wintermeyer, N.; Winters, AR; Gassner, GJ; Warburton, T., An entropy stable discontinuous Galerkin method for the shallow water equations on curvilinear meshes with wet/dry fronts accelerated by GPUs, Journal of Computational Physics, 375, 447-480 (2018) · Zbl 1416.65363 · doi:10.1016/j.jcp.2018.08.038
[117] Winters, AR; Gassner, GJ, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, Journal of Computational Physics, 301, 72-108 (2016) · Zbl 1349.76407 · doi:10.1016/j.jcp.2015.09.055
[118] Winters, AR; Derigs, D.; Gassner, GJ; Walch, S., A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, Journal of Computational Physics, 332, 274-289 (2017) · Zbl 1378.76144 · doi:10.1016/j.jcp.2016.12.006
[119] Winters, A. R., Moura, R. C., Mengaldo, G., Gassner, G. J., Walch, S., Peiro, J., et al. (2018). A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. Journal of Computational Physics, 372, 1-21. · Zbl 1415.76461
[120] Winters, A. R., Czernik, C., Schily, M. B., & Gassner, G. J. (2019). Entropy stable numerical approximations for the isothermal and polytropic Euler equations. BIT Numerical Mathematics, 1-34. · Zbl 1446.65134
[121] Wu, K., & Shu, C.-W. (2019) Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations. arXiv:1907.07467.
[122] Xie, Z.; Wang, L-L; Zhao, X., On exponential convergence of gegenbauer interpolation and spectral differentiation, Mathematics of Computation, 82, 1017-1036 (2013) · Zbl 1262.30023 · doi:10.1090/S0025-5718-2012-02645-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.