×

Analysis and entropy stability of the line-based discontinuous Galerkin method. (English) Zbl 1418.65136

Summary: We develop a discretely entropy-stable line-based discontinuous Galerkin method for hyperbolic conservation laws based on a flux differencing technique. By using standard entropy-stable and entropy-conservative numerical flux functions, this method guarantees that the discrete integral of the entropy is non-increasing. This nonlinear entropy stability property is important for the robustness of the method, in particular when applied to problems with discontinuous solutions or when the mesh is under-resolved. This line-based method is significantly less computationally expensive than a standard DG method. Numerical results are shown demonstrating the effectiveness of the method on a variety of test cases, including Burgers’ equation and the Euler equations, in one, two, and three spatial dimensions.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Black, K.: Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1-4), 373-379 (2000). https://doi.org/10.1016/s0168-9274(99)00104-x · Zbl 0964.65104 · doi:10.1016/s0168-9274(99)00104-x
[2] Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130(-1), 411 (1983). https://doi.org/10.1017/s0022112083001159 · Zbl 0517.76033 · doi:10.1017/s0022112083001159
[3] Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835-B867 (2014). https://doi.org/10.1137/130932193 · Zbl 1457.65140 · doi:10.1137/130932193
[4] Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346-374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033 · Zbl 1391.76310 · doi:10.1016/j.jcp.2018.02.033
[5] Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14(05), 1252-1286 (2013). https://doi.org/10.4208/cicp.170712.010313a · Zbl 1373.76121 · doi:10.4208/cicp.170712.010313a
[6] Chapelier, J.B., Plata, M.D.L.L., Renac, F.: Inviscid and viscous simulations of the Taylor-Green vortex flow using a modal discontinuous Galerkin approach. In: 42nd AIAA Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics (2012). https://doi.org/10.2514/6.2012-3073
[7] Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427-461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025 · Zbl 1380.65253 · doi:10.1016/j.jcp.2017.05.025
[8] Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \[p^1\] p1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337-361 (1991). https://doi.org/10.1051/m2an/1991250303371 · Zbl 0732.65094 · doi:10.1051/m2an/1991250303371
[9] Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173-261 (2001). https://doi.org/10.1023/A:1012873910884 · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[10] Fernandez, P., Nguyen, N.C., Peraire, J.: Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier-Stokes equations (2018). ArXiv:1808.05066
[11] Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518-557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014 · Zbl 1349.65293 · doi:10.1016/j.jcp.2013.06.014
[12] Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233-A1253 (2013). https://doi.org/10.1137/120890144 · Zbl 1275.65065 · doi:10.1137/120890144
[13] Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39-66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013 · Zbl 1422.65280 · doi:10.1016/j.jcp.2016.09.013
[14] Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151-164 (1983). https://doi.org/10.1016/0021-9991(83)90118-3 · Zbl 0503.76088 · doi:10.1016/0021-9991(83)90118-3
[15] Hou, S., Liu, X.D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31(1-2), 127-151 (2006). https://doi.org/10.1007/s10915-006-9105-9 · Zbl 1152.76433 · doi:10.1007/s10915-006-9105-9
[16] Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput Methods Appl Mech Eng 54(2), 223-234 (1986). https://doi.org/10.1016/0045-7825(86)90127-1 · Zbl 0572.76068 · doi:10.1016/0045-7825(86)90127-1
[17] Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410-5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021 · Zbl 1280.76015 · doi:10.1016/j.jcp.2009.04.021
[18] Jiang, G., Shu, C.W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62(206), 531 (1994). https://doi.org/10.2307/2153521 · Zbl 0801.65098 · doi:10.2307/2153521
[19] Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301-327 (2006). https://doi.org/10.1007/s10915-005-9070-8 · Zbl 1178.76269 · doi:10.1007/s10915-005-9070-8
[20] Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244-261 (1996). https://doi.org/10.1006/jcph.1996.0091 · Zbl 0847.76069 · doi:10.1006/jcph.1996.0091
[21] Moura, R., Mengaldo, G., Peiró, J., Sherwin, S.: On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615-623 (2017). https://doi.org/10.1016/j.jcp.2016.10.056 · Zbl 1378.76036 · doi:10.1016/j.jcp.2016.10.056
[22] Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37(1), 70-92 (1980). https://doi.org/10.1016/0021-9991(80)90005-4 · Zbl 0476.65078 · doi:10.1016/0021-9991(80)90005-4
[23] Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19-19 (1988). https://doi.org/10.1090/s0025-5718-1988-0917817-x · Zbl 0637.65091 · doi:10.1090/s0025-5718-1988-0917817-x
[24] Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations. SIAM J. Sci. Comput. 38(5), A3129-A3162 (2016). https://doi.org/10.1137/15m1043510 · Zbl 1457.65149 · doi:10.1137/15m1043510
[25] Pazner, W., Persson, P.O.: High-order DNS and LES simulations using an implicit tensor-product discontinuous Galerkin method. In: 23rd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-3948
[26] Pazner, W., Persson, P.O.: Stage-parallel fully implicit Runge-Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700-717 (2017). https://doi.org/10.1016/j.jcp.2017.01.050 · Zbl 1375.76164 · doi:10.1016/j.jcp.2017.01.050
[27] Pazner, W., Persson, P.O.: Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys. 354, 344-369 (2018). https://doi.org/10.1016/j.jcp.2017.10.030 · Zbl 1380.65067 · doi:10.1016/j.jcp.2017.10.030
[28] Persson, P.O.: High-order Navier-Stokes simulations using a sparse line-based discontinuous Galerkin method. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2012). https://doi.org/10.2514/6.2012-456
[29] Persson, P.O.: A sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes. J. Comput. Phys. 233, 414-429 (2013). https://doi.org/10.1016/j.jcp.2012.09.008 · Zbl 1286.65127 · doi:10.1016/j.jcp.2012.09.008
[30] Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.2514/6.2006-112
[31] Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216-242 (2017). https://doi.org/10.1007/s10915-017-0618-1 · Zbl 1397.65151 · doi:10.1007/s10915-017-0618-1
[32] Rasetarinera, P., Hussaini, M.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172(2), 718-738 (2001). https://doi.org/10.1006/jcph.2001.6853 · Zbl 0986.65093 · doi:10.1006/jcph.2001.6853
[33] Ray, D., Chandrashekar, P.: Entropy stable schemes for compressible Euler equations. Int. J. Numer. Anal. Model. Ser. B 4(4), 335-352 (2013) · Zbl 1463.76036
[34] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)
[35] Shu, C.W., Don, W.S., Gottlieb, D., Schilling, O., Jameson, L.: Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow. J. Sci. Comput. 24(1), 1-27 (2005). https://doi.org/10.1007/s10915-004-5407-y · Zbl 1161.76535 · doi:10.1007/s10915-004-5407-y
[36] Sørensen, H.H.B.: Auto-tuning of level 1 and level 2 BLAS for GPUs. Concurr. Comput. 25(8), 1183-1198 (2012). https://doi.org/10.1002/cpe.2916 · doi:10.1002/cpe.2916
[37] Tadmor, E.; Iserles, A. (ed.), Entropy stable theory for difference approximations of nonlinear conservation laws and related time-dependent problems, 451-512 (2003), Cambridge · Zbl 1046.65078 · doi:10.1017/cbo9780511550157.007
[38] Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91-91 (1987). https://doi.org/10.1090/s0025-5718-1987-0890255-3 · Zbl 0641.65068 · doi:10.1090/s0025-5718-1987-0890255-3
[39] Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. A Math. Phys. Eng. Sci. 158(895), 499-521 (1937). https://doi.org/10.1098/rspa.1937.0036 · JFM 63.1358.03 · doi:10.1098/rspa.1937.0036
[40] Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030-1037 (1979). https://doi.org/10.2514/3.61273 · Zbl 0436.76025 · doi:10.2514/3.61273
[41] Vos, P.E., Sherwin, S.J., Kirby, R.M.: From \[h\] h to \[p\] p efficiently: implementing finite and spectral/\[hp\] hp element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229(13), 5161-5181 (2010). https://doi.org/10.1016/j.jcp.2010.03.031 · Zbl 1194.65138 · doi:10.1016/j.jcp.2010.03.031
[42] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811-845 (2013). https://doi.org/10.1002/fld.3767 · Zbl 1455.76007 · doi:10.1002/fld.3767
[43] Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiro, J., Sherwin, S.J.: A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372, 1-21 (2018). https://doi.org/10.1016/j.jcp.2018.06.016 · Zbl 1415.76461 · doi:10.1016/j.jcp.2018.06.016
[44] Zahr, M.J., Persson, P.O.: Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier-Stokes equations. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2013). https://doi.org/10.2514/6.2013-2685
[45] Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918-8934 (2010). https://doi.org/10.1016/j.jcp.2010.08.016 · Zbl 1282.76128 · doi:10.1016/j.jcp.2010.08.016
[46] Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479-490 (2013). https://doi.org/10.1016/j.cma.2012.08.018 · Zbl 1297.76109 · doi:10.1016/j.cma.2012.08.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.