×

Application of approximate dispersion-diffusion analyses to under-resolved Burgers turbulence using high resolution WENO and UWC schemes. (English) Zbl 07503728

Summary: This paper presents a space-time approximate diffusion-dispersion analysis of high-order, finite volume Upwind Central (UWC) and Weighted Essentially Non-Oscillatory (WENO) schemes. We perform a thorough study of the numerical errors to find a-priori guidelines for the computation of under-resolved turbulent flows. In particular, we study the 3-rd, 5-th and 7-th order UWC and WENO reconstructions in space, and 3-rd and 4-th order Runge-Kutta time integrators. To do so, we use the approximate von Neumann analysis for non-linear schemes introduced by Pirozzoli. Moreover, we apply the “1% rule” for the dispersion-diffusion curves proposed by R. C. Moura et al. [ibid. 298, 695–710 (2015; Zbl 1349.76131)] to determine the range of wavenumbers that are accurately resolved by each scheme. The dispersion-diffusion errors estimated from these analyses agree with the numerical results for the forced Burgers’ turbulence problem, which we use as a benchmark. The cut-off wavenumbers defined by the “1% rule” are evidenced to serve as a good estimator of the beginning of the dissipation region of the energy cascade and they are shown to be associated to a similar level of dissipation, with independence of the scheme.
Finally, we show that WENO schemes are more diffusive than UWC schemes, leading to stable simulations at the price of more dissipative results. It is concluded both UWC and WENO schemes may be suitable schemes for iLES turbulence modeling, given their numerical dissipation level acting at the appropriate wavenumbers.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Fxx Turbulence
76Mxx Basic methods in fluid mechanics

Citations:

Zbl 1349.76131
Full Text: DOI

References:

[1] Alhawwary, M.; Wang, Z., Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws, J. Comput. Phys., 373, 835-862 (2018) · Zbl 1416.65252
[2] Alhawwary, M. A.; Wang, Z. J., A study of DG methods for diffusion using the combined-mode analysis
[3] Balsara, D. S., Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods, Living Rev. Comput. Astrophys., 3 (2017), https://arxiv.org/abs/10.1007/s41115-017-0002-8, https://doi.org/10.1007/s41115-017-0002-8
[4] Balsara, D. S.; Garain, S.; Florinski, V.; Boscheri, W., An efficient class of WENO schemes with adaptive order for unstructured meshes, J. Comput. Phys., 404, Article 109062 pp. (2020) · Zbl 1453.65208
[5] Balsara, D. S.; Garain, S.; Shu, C.-W., An efficient class of WENO schemes with adaptive order, J. Comput. Phys., 326, 780-804 (2016) · Zbl 1422.65146
[6] Balsara, D. S.; Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[7] Bec, J.; Khanin, K., Burgers turbulence, Phys. Rep., 447, 1-66 (2007)
[8] Bogey, C.; Bailly, C., Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model, Int. J. Heat Fluid Flow, 27, 603-610 (2006), Special Issue of The Fourth International Symposium on Turbulence and Shear Flow Phenomena - 2005
[9] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211 (2008) · Zbl 1136.65076
[10] Burgers, J., A Mathematical Model Illustrating the Theory of Turbulence, Advances in Applied Mechanics, vol. 1, 171-199 (1948), Elsevier
[11] Chavez-Modena, M.; Ferrer, E.; Rubio, G., Improving the stability of multiple-relaxation lattice Boltzmann methods with central moments, Comput. Fluids, 172, 397-409 (2018) · Zbl 1410.76341
[12] Chekhlov, A.; Yakhot, V., Kolmogorov turbulence in a random-force-driven Burgers equation: anomalous scaling and probability density functions, Phys. Rev. E, 52, 5681-5684 (1995)
[13] Crank, J.; Nicolson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Math. Proc. Camb. Philos. Soc., 43, 50-67 (1947) · Zbl 0029.05901
[14] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001 (2008) · Zbl 1142.65070
[15] Grinstein, L. M.W. R.F., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (2007), Cambridge University Press · Zbl 1135.76001
[16] Falkovich, G.; Sreenivasan, K. R., Lessons from hydrodynamic turbulence, Phys. Today, 59, 43 (2006)
[17] Fambri, F.; Dumbser, M.; Zanotti, O., Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations, Comput. Phys. Commun., 220, 297-318 (2017)
[18] Fehn, N.; Wall, W.; Kronbichler, M., Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows, Int. J. Numer. Methods Fluids, 88, 32-54 (2018)
[19] Ferrer, E., An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations, J. Comput. Phys., 348, 754-775 (2017) · Zbl 1380.76018
[20] Fu, L., A very-high-order TENO scheme for all-speed gas dynamics and turbulence, Comput. Phys. Commun., 244, 117-131 (2019) · Zbl 07674836
[21] Garcia-Navarro, P.; Vazquez-Cendon, M., On numerical treatment of the source terms in the shallow water equations, Comput. Fluids, 29, 951-979 (2000) · Zbl 0986.76051
[22] Garnier, E.; Mossi, M.; Sagaut, P.; Comte, P.; Deville, M., On the use of shock-capturing schemes for large-eddy simulation, J. Comput. Phys., 153, 273-311 (1999) · Zbl 0949.76042
[23] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 221-237 (2013)
[24] Gottlieb, S.; Grant, Z.; Higgs, D., Optimal explicit strong stability preserving Runge-Kutta methods with high linear order and optimal nonlinear order, Math. Comput., 84 (2014)
[25] Hirsch, C., The analysis of numerical schemes, (Second Edition; Hirsch, C., Numerical Computation of Internal and External Flows (2007), Butterworth-Heinemann: Butterworth-Heinemann Oxford), 279-281
[26] Jia, F.; Gao, Z.; Don, W. S., A spectral study on the dissipation and dispersion of the WENO schemes, J. Sci. Comput., 63 (2014)
[27] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[28] Johnsen, E.; Larsson, J.; Bhagatwala, A. V.; Cabot, W. H.; Moin, P.; Olson, B. J.; Rawat, P. S.; Shankar, S. K.; Sjögreen, B.; Yee, H.; Zhong, X.; Lele, S. K., Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, J. Comput. Phys., 229, 1213-1237 (2010) · Zbl 1329.76138
[29] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. Math. Phys. Sci., 434, 9-13 (1991) · Zbl 1142.76389
[30] LaBryer, A.; Attar, P. J.; Vedula, P., A framework for large eddy simulation of Burgers turbulence based upon spatial and temporal statistical information, Phys. Fluids, 27, Article 035116 pp. (2015)
[31] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press · Zbl 1010.65040
[32] Li, Y.; Wang, Z., A priori and a posteriori evaluations of sub-grid scale models for the Burgers’ equation, Comput. Fluids, 139, 92-104 (2016), 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics - a special issue dedicated to the 60th birthday of Professor David Kopriva · Zbl 1390.76185
[33] Li, Y.; Yan, C.; Yu, J., High accuracy schemes for compressible turbulence simulations, (2017 8th ICMAE (2017)), 239-243
[34] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[35] Love, M. D., Subgrid modelling studies with Burgers’ equation, J. Fluid Mech., 100, 87-110 (1980) · Zbl 0441.76022
[36] Manzanero, J., Dispersion-diffusion analysis for variable coefficient advection problems, with application to alternative DG formulations and under-resolved turbulence (2016), Universidad Politécnica de Madrid, Master’s thesis
[37] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a Smagorinsky spectral vanishing viscosity turbulence model for discontinuous Galerkin methods, Comput. Fluids, 200, Article 104440 pp. (2020) · Zbl 1519.76095
[38] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E., Dispersion-dissipation analysis for advection problems with nonconstant coefficients: applications to discontinuous Galerkin formulations, SIAM J. Sci. Comput., 40, A747-A768 (2018) · Zbl 1453.65337
[39] Maulik, R.; San, O., Resolution and energy dissipation characteristics of implicit LES and explicit filtering models for compressible turbulence, Fluids, 2, 14 (2017)
[40] Maulik, R.; San, O., Explicit and implicit LES closures for Burgers turbulence, J. Comput. Appl. Math., 327, 12-40 (2018) · Zbl 1451.76063
[41] Moura, R.; Sherwin, S.; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J. Comput. Phys., 298, 695-710 (2015) · Zbl 1349.76131
[42] Navas-Montilla, A.; Juez, C.; Franca, M.; Murillo, J., Depth-averaged unsteady RANS simulation of resonant shallow flows in lateral cavities using augmented WENO-ADER schemes, J. Comput. Phys. (2019) · Zbl 1452.76127
[43] Navas-Montilla, A.; Murillo, J., Energy balanced numerical schemes with very high order. The augmented Roe flux ADER scheme. Application to the shallow water equations, J. Comput. Phys., 290, 188-218 (2015) · Zbl 1349.76372
[44] Pirozzoli, S., On the spectral properties of shock-capturing schemes, J. Comput. Phys., 219, 489-497 (2006) · Zbl 1103.76040
[45] Pope, S. B., Turbulent Flows (2000), Cambridge University Press · Zbl 0966.76002
[46] Ritos, K.; Kokkinakis, I. W.; Drikakis, D., Performance of high-order implicit large eddy simulations, Comput. Fluids, 173, 307-312 (2018) · Zbl 1410.76117
[47] San, O.; Kara, K., Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin-Helmholtz instability, Comput. Fluids, 117, 24-41 (2015) · Zbl 1390.76617
[48] San, O.; Staples, A. E., High-order methods for decaying two-dimensional homogeneous isotropic turbulence, Comput. Fluids, 63, 105-127 (2012) · Zbl 1365.76064
[49] Sharan, N.; Matheou, G.; Dimotakis, P. E., Mixing, scalar boundedness, and numerical dissipation in large-eddy simulations, J. Comput. Phys., 369, 148-172 (2018) · Zbl 1392.76023
[50] Shi, J.; Zhang, Y.-T.; Shu, C.-W., Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 690-696 (2003) · Zbl 1047.76081
[51] Shu, C.-W., Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws (1998), Springer: Springer Berlin, Heidelberg · Zbl 0927.65111
[52] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[53] Titarev, V.; Toro, E., ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[54] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int. J. Numer. Methods Eng., 87, 232-261 (2011) · Zbl 1242.76085
[55] Vermeire, B. C.; Nadarajah, S.; Tucker, P. G., Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme, Int. J. Numer. Methods Fluids, 82, 231-260 (2016)
[56] Zhang, R.; Zhang, M.; Shu, C.-W., On the order of accuracy and numerical performance of two classes of finite volume WENO schemes, Commun. Comput. Phys., 9, 807-827 (2011) · Zbl 1364.65176
[57] Zhao, S.; Lardjane, N.; Fedioun, I., Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows, Comput. Fluids, 95, 74-87 (2014) · Zbl 1391.76504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.