×

On the use of shock-capturing schemes for large-eddy simulation. (English) Zbl 0949.76042

Summary: Numerical simulations of freely decaying isotropic fluid turbulence are performed at Mach numbers from 0.2 to 1.0 using known shock-capturing Euler schemes (Jameson, TVD-MUSCL, ENO). The objective is to evaluate the relevance of the use of such schemes in the large-eddy simulation (LES) context. The potential of the monotone integrated large-eddy simulation approach is investigated by carrying out computations without viscous diffusion terms. Although some known physical trends were respected, it is found that small scales of simulated flows suffer from high numerical damping. In a quasi-incompressible case, this numerical dissipation is tentatively interpreted in terms of turbulent dissipation, yielding the evaluation of equivalent Taylor micro-scales. The Reynolds numbers based on these are found between 30 and 40, depending on the scheme and on the resolution (up to \(128^3\)). The numerical dissipation is also interpreted in terms of subgrid-scale dissipation in a LES context, yielding equivalent Smagorinsky “constants” which do not level off with time, and which remain larger than the commonly accepted values of the classical Smagorinsky constant. On the grounds of tests with either the Smagorinsky or a dynamic model, the addition of explicit subgrid-scale model to shock-capturing Euler codes is not recommended.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F05 Isotropic turbulence; homogeneous turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Ghosal, S., An analysis of numerical errors in large-eddy simulations of turbulence, J. Comput. Phys., 125, 187 (1996) · Zbl 0848.76043
[2] Kravchenko, A. G.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys., 131, 310 (1997) · Zbl 0872.76074
[3] Vreman, B.; Geurts, B.; Kuerten, H., Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D, Comm. Numer. Methods Eng., 10, 785 (1994) · Zbl 0812.76072
[4] Kawamura, T.; Kuwahara, K., Computation of High Reynolds Number Flow around a Circular Cylinder with Surface Roughness (1984)
[5] Porter, D. H.; Pouquet, A.; Woodward, P. R., Kolmogorov-like spectra in decaying three-dimensional supersonic flows, Phys. Fluids, 6, 2133 (1994) · Zbl 0828.76042
[6] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dynam. Res., 10, 199 (1992)
[7] Fureby, C.; Tabor, G.; Weller, H. G.; Gosman, D., A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. Fluids, 9, 1416 (1997) · Zbl 1185.76663
[8] Mossi, M., Analysis of Accuracy of Second- and Third-Order Shock-Capturing Schemes by Testing the Taylor-Green Vortex-Decay (1997)
[9] Brachet, M. E.; Meiron, D. I.; Orszag, S. A.; Nickel, B. G.; Morf, R. H.; Frisch, U., Small-scale structure of Taylor-Green vortex, J. Fluid Mech., 130, 411 (1983) · Zbl 0517.76033
[10] Métais, O.; Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., 239, 157 (1992) · Zbl 0825.76272
[11] Vincent, A.; Meneguzzi, M., The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech., 225, 1 (1991) · Zbl 0721.76036
[12] She, Z.-S., Intermittency and non-gaussian statistics in turbulence, Fluid Dynam. Res., 8, 143 (1991)
[13] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32 (1989) · Zbl 0674.65061
[14] Passot, T.; Pouquet, A., Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech., 181, 441 (1987) · Zbl 0633.76054
[15] Blaisdell, G. A.; Mansour, N. N.; Reynolds, W. C., Compressibility effects on the growth and structure of homogeneous turbulent shear flow, J. Fluid Mech., 256, 443 (1993) · Zbl 0800.76186
[16] Erlebacher, G.; Hussaini, M. Y.; Speziale, C. G.; Zang, T. A., Toward the large-eddy simulation of compressible flows, J. Fluid Mech., 238, 155 (1992) · Zbl 0775.76059
[17] Lesieur, M., Turbulence in Fluids (1990) · Zbl 0748.76004
[18] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[19] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200 (1994) · Zbl 0811.65076
[20] Jiménez, J.; Wray, A. A.; Saffman, Ph. G.; Rogallo, R. S., The structure of intense vorticity in isotropic turbulence, J. Fluid Mech., 255, 65 (1993) · Zbl 0800.76156
[21] Hinze, J. O., Turbulence (1975)
[22] Porter, D. H.; Pouquet, A.; Woodward, P. R., Three-dimensional supersonic homogeneous turbulence: A numerical study, Phys. Rev. Lett., 68, 3156 (1992) · Zbl 0761.76074
[23] Batchelor, G. K.; Townsend, Proc. R. Soc. London A, 199, 238 (1949) · Zbl 0036.25602
[24] Vreman, A. W.; Geurts, B. J.; Kuerten, J. G.M.; Zandbergen, P. J., A finite volume approach to large eddy simulation of compressible, homogeneous, isotropic, decaying turbulence, Int. J. Numer. Methods Fluids, 15, 799 (1992) · Zbl 0825.76634
[25] Zang, T. A.; Dahlburg, R. B.; Dahlburg, J. P., Direct and large-eddy simulation of three-dimensional compressible Navier-Stokes turbulence, Phys. Fluids A, 4, 127 (1992) · Zbl 0742.76060
[26] Smagorinsky, J., General circulation experiments with the primitive equations. I. The basic experiment, Month. Wealth. Rev., 91, 99 (1963)
[27] Deardorff, J. W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid. Mech., 41, 453 (1970) · Zbl 0191.25503
[29] Deardorff, J. W., On the magnitude of the subgrid scale eddy viscosity coefficient, J. Comput. Phys., 7, 120 (1971) · Zbl 0227.76082
[30] Blaisdell, G. A.; Spylopoulos, E. T.; Qin, J. H., The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 207 (1996) · Zbl 0858.76060
[31] Najjar, F. M.; Tafti, D. K., Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model, Phys. Fluids, 8, 1076 (1996) · Zbl 1025.76539
[33] Jameson, A.; Schmidt, W.; Turkel, E., Numerical Simulation of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes (1981)
[34] Vos, J. B.; Leyland, P.; Lindberg, P. A.; van Kemenade, V.; Gacherieu, C.; Duquesne, N.; Lotstedt, P.; Weber, C.; Ytterstrom, A., NSMB Handbook 4.0 (1997)
[35] Martinelli, L., Calculations of Viscous Flows with a Multigrid Method (1987)
[36] Swanson, R. C.; Turkel, E., On central-difference and upwind schemes, J. Comput. Phys., 101, 292 (1992) · Zbl 0757.76044
[37] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357 (1981) · Zbl 0474.65066
[38] Roe, P. L., Characteristic based schemes for the Euler equations, Ann. Rev. Fluid Mech., 18, 337 (1986) · Zbl 0624.76093
[39] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101 (1979) · Zbl 1364.65223
[40] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Comput. Phys., 68, 151 (1987) · Zbl 0621.76026
[41] Shu, C. W., Numerical experiments on the accuracy of ENO and Modified ENO schemes, J. Sci. Comput., 5, 127 (1990) · Zbl 0732.65085
[42] Vreman, A. W., Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer (1995)
[43] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760 (1991) · Zbl 0825.76334
[44] Germano, M., Turbulence: The filtering approach, J. Fluid Mech., 238, 325 (1992) · Zbl 0756.76034
[45] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 633 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.