×

Mild solutions for a multi-term fractional differential equation via resolvent operators. (English) Zbl 1525.34017


MSC:

34A08 Fractional ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
47D06 One-parameter semigroups and linear evolution equations

References:

[1] M. Ali, S. A. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions, <i>Math. Methods Appl. Sci.</i>, <b>40</b> (2017), 7737-7748. · Zbl 1387.80006
[2] E, Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions, Electron. J. Differ. Equations, 39, 1-10 (2014) · Zbl 1290.34006
[3] B, On fractional heat equations with non-local initial conditions, Proc. Edinburgh Math. Soc., 59, 65-76 (2016) · Zbl 1332.35378 · doi:10.1017/S0013091515000590
[4] D, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal.: Theory Methods Appl., 69, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[5] W. Arendt, C. Batty, M. Hieber, F. Neubrander, <i>Vector-Valued Laplace Transforms and Cauchy Problems</i>, Birkhäuser Verlag, Basel, 2011. · Zbl 1226.34002
[6] L, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162, 494-505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[7] A. Caicedo, C. Cuevas, G. M. Mophou, G. N’Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, <i>J. Franklin Inst.</i>, <b>349</b> (2012), 1-24. · Zbl 1260.34142
[8] J, Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 277-283 (2012) · Zbl 1248.35218 · doi:10.1016/j.cnsns.2011.05.005
[9] P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in \(\mathbb R^N, \) <i>J. Differ. Equations</i>, <b>259</b> (2015), 2948-2980. · Zbl 1436.35316
[10] P, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calculus Appl. Anal., 23, 268-291 (2020) · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[11] E, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Conference Publications, American Institute of Mathematical Sciences, 2007, 277-285 (2007) · Zbl 1163.45306
[12] C, Almost automorphic solutions to a class of semilinear fractional differential equations, Appl. Math. Lett., 21, 1315-1319 (2008) · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[13] C. Cuevas, J. C. de Souza, <i>S</i>-asymptotically \(\omega \)-periodic solutions of semilinear fractional integro-differential equations, <i>Appl. Math. Lett.</i>, <b>22</b> (2009), 865-870. · Zbl 1176.47035
[14] T. Diagana, <i>Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, </i> Springer, New York, 2013. · Zbl 1279.43010
[15] J. Diestel, J. J. Uhl, <i>Vector Measures, </i> American Mathematical Society, Providence, 1977. · Zbl 0369.46039
[16] S. D, Eidelman, A. N. Kochubei, Cauchy problem for fractional diffusion equations, <i>J. Differ. Equations, </i> <b>199</b> (2004), 211-255. · Zbl 1068.35037
[17] K, One-parameter semigroups for linear evolution equations, Semigroup forum, Springer-Verlag, 63, 278-280 (2001) · doi:10.1007/s002330010042
[18] M. Haase, <i>The Functional Calculus for Sectorial Operators, </i> Birkäuser Verlag, Basel, 2006. · Zbl 1101.47010
[19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, <i>Theory and Applications of Fractional Differential Equations, </i> Elsevier Science B.V., Amsterdam, 2006. · Zbl 1092.45003
[20] K, Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives, J. Funct. Anal., 263, 476-510 (2012) · Zbl 1266.47066 · doi:10.1016/j.jfa.2012.04.011
[21] C, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 243, 278-292 (2000) · Zbl 0952.45005 · doi:10.1006/jmaa.1999.6668
[22] C. Lizama, Solutions of two-term time fractional order differential equations with nonlocal initial conditions, <i>Electron. J. Qualitative Theory Differ. Equations</i>, <b>82</b> (2012), 1-9. · Zbl 1340.34027
[23] C. Lizama, G. M. N’Guérékata, Bounded mild solutions for semilinear integro-differential equations in Banach spaces, <i>Integr. Equations Oper. Theory, </i> <b>68</b> (2010), 207-227. · Zbl 1209.45007
[24] C. Lizama, G. M. N’Guérékata, Mild solutions for abstract fractional differential equations, <i>Appl. Anal.</i>, <b>92</b> (2013), 1731-1754. · Zbl 1276.34004
[25] K. S. Miller, B. Ross, <i>An Introduction to the Fractional Calculus and Fractional Differential Equations, </i> Wiley, New York, 1993. · Zbl 0789.26002
[26] G. M. Mophou, G. M. N’Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, <i>Semigroup Forum, Springer-Verlag</i>, <b>79</b> (2009), 315-322. · Zbl 1180.34006
[27] G. M. N’Guérékata, <i>Topics in Almost Automorphy, </i> Springer Verlag, New York, 2005. · Zbl 1073.43004
[28] R, Asymptotic behavior of mild solutions to fractional Cauchy problems in Banach spaces, Appl. Math. Lett., 105, 106322 (2020) · Zbl 1507.34064 · doi:10.1016/j.aml.2020.106322
[29] R, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, Springer US, 87, 377-392 (2013) · Zbl 1285.34071 · doi:10.1007/s00233-013-9474-y
[30] R, Existence of mild solutions to nonlocal fractional Cauchy problems via compactness, Abstr. Appl. Anal., 2016, 4567092 (2016) · Zbl 1470.34025
[31] R, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differ. Equations, 255, 3284-3304 (2013) · Zbl 1321.34104 · doi:10.1016/j.jde.2013.07.035
[32] R, Subordination principle for fractional diffusion-wave equations of Sobolev type, Fract. Calculus Appl. Anal., 23, 427-449 (2020) · Zbl 1451.34014 · doi:10.1515/fca-2020-0021
[33] X. B. Shu, Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1 < \alpha < 2, \) <i>Comput. Math. Appl.</i>, <b>64</b> (2012), 2100-2110. · Zbl 1268.34155
[34] L. Shu, X. B. Shu, J. Mao, Approximate controllability and existence of mild solutions for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1 < \alpha < 2\), <i>Fract. Calculus Appl. Anal.</i>, <b>22</b> (2019), 1086-1112. · Zbl 1441.93038
[35] B, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative, Math. Methods Appl. Sci., 40, 6468-6479 (2017) · Zbl 1387.35625 · doi:10.1002/mma.4468
[36] V, Differential equations in Banach spaces. Ⅱ. Theory of cosine operator functions, J. Math. Sci., 122, 3055-3174 (2004) · Zbl 1115.34058 · doi:10.1023/B:JOTH.0000029697.92324.47
[37] G, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96, 131-137 (2019) · Zbl 1447.35302 · doi:10.1016/j.aml.2019.04.024
[38] R, A note on the fractional Cauchy problems with nonlocal initial conditions, Appl. Math. Lett., 24, 1435-1442 (2011) · Zbl 1251.45008 · doi:10.1016/j.aml.2011.03.026
[39] A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen \(E^a(x), \) <i>Acta Math.</i>, <b>29</b> (1905), 191-201. · JFM 36.0471.01
[40] A. Wiman, Über die Nullstellen der Funktionen \(E^a(x), \) <i>Acta Math.</i>, <b>29</b> (1905), 217-234. · JFM 36.0472.01
[41] X. J. Yang, <i>General Fractional Derivatives: Theory, Methods and Applications</i>, CRC Press, New York, 2019. · Zbl 1417.26001
[42] X. J. Yang, F. Gao, Y. Ju, <i>General Fractional Derivatives with Applications in Viscoelasticity, </i> Academic Press, 2020. · Zbl 1446.26001
[43] X, New insight into the Fourier-like and Darcy-like models in porous medium, Thermal Sci., 24, 3847-385 (2020) · doi:10.2298/TSCI2006847Y
[44] R, A weak Harnack inequality for fractional differential equations, J. Integral Equations Appl., 19, 209-232 (2007) · Zbl 1140.34003
[45] Y. Zhou, <i>Basic Theory of Fractional Differential Equations</i>, World Scientific, 2014. · Zbl 1336.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.