×

Existence of anti-periodic mild solutions for a class of semilinear fractional differential equations. (English) Zbl 1248.35218

Summary: This work is concerned with the existence of anti-periodic mild solutions for a class of semilinear fractional differential equations \[ D^\alpha_t x(t)= Ax(t)+ D^{\alpha-1}_t F(t,x(t)),\quad t\in\mathbb{R}, \] where \(1< \alpha< 2\), \(A\) is a linear densely defined operator of sectorial type of \(\omega< 0\) on a complex Banach space \(X\) and \(F\) is an appropriate function defined on phase space, the fractional derivative is understood in the Riemann-Liouville sense. The results obtained are utilized to study the existence of anti-periodic mild solutions to a fractional relaxation-oscillation equation.

MSC:

35R11 Fractional partial differential equations
35D30 Weak solutions to PDEs
32K05 Banach analytic manifolds and spaces
Full Text: DOI

References:

[1] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations, North-HollandMathematics Studies, vol. 204 (2006), Elsevier Science B.V: Elsevier Science B.V Amsterdam · Zbl 1092.45003
[2] Samko, S.; Kilbas, A.; Marichev, O., Fractional integral and derivatives: theory and applications (1993), Gordon and Breach: Gordon and Breach Science Publishers, Switzerland · Zbl 0818.26003
[3] Diethelm, K., The analysis of fractional differential equations, Lecture notes in mathematics, 2004 (2010), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1215.34001
[4] Hilfer, R., Applications of fractional calculus in physics (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[5] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[6] Agarwal, R.; Belmekki, M.; Benchohra, M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv Differ Equat, 47 (2009), Article ID 981728 · Zbl 1182.34103
[7] Agarwal, R.; Lakshmikantham, V.; Nieto, J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal Theor Methods Appl, 72, 2859-2862 (2010) · Zbl 1188.34005
[8] Benchohra, M.; Henderson, J.; Ntouyas, S.; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, J Math Anal Appl, 338, 1340-1350 (2008) · Zbl 1209.34096
[9] Agarwal, R.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl Math, 109, 973-1033 (2010) · Zbl 1198.26004
[10] EL-Borai, M., Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, 14, 433-440 (2002) · Zbl 1005.34051
[11] Lakshmikantham, V., Theory of fractional differential equations, Nonlinear Anal Theor Methods Appl, 60, 3337-3343 (2008) · Zbl 1162.34344
[12] Lakshmikantham, V.; Vatsala, A., Basic theory of fractional differential equations, Nonlinear Anal Theor Methods Appl, 69, 2677-2682 (2008) · Zbl 1161.34001
[13] Lakshmikantham, V.; Vatsala, A., Theory of fractional differential inequalities and applications, Commun Appl Anal, 11, 395-402 (2007) · Zbl 1159.34006
[14] Lakshmikantham, V.; Devi, J., Theory of fractional differential equations in Banach spaces, Eur J Pure Appl Math, 1, 38-45 (2008) · Zbl 1146.34042
[15] Mophou, G.; Nakoulima, O.; N’Guérékata, G., Existence results for some fractional differential equations with nonlocal conditions, Nonlinear Stud, 17, 15-22 (2010) · Zbl 1204.34010
[16] Mophou, G.; N’Guérékata, G., Existence of mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79, 315-322 (2009) · Zbl 1180.34006
[17] Mophou, G. M.; N’Guérékata, G., On solutions of some nonlocal fractional differential equations with nondense domain, Nonlinear Anal Theor Methods Appl, 71, 4668-4675 (2009) · Zbl 1178.34005
[18] Mophou, G. M., Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal Theor Methods Appl, 72, 1604-1615 (2010) · Zbl 1187.34108
[19] N’Guérékata, G., A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Anal Theor Methods Appl, 70, 1873-1876 (2009) · Zbl 1166.34320
[20] Bazhlekova E. Fractional evolution equations in Banach spaces. Ph.D. Thesis. Eindhoven University of Technology; 2001.; Bazhlekova E. Fractional evolution equations in Banach spaces. Ph.D. Thesis. Eindhoven University of Technology; 2001. · Zbl 0989.34002
[21] Eidelman, S.; Kochubei, A., Cauchy problem for fractional diffusion equations, J Differ Equat, 199, 211-255 (2004) · Zbl 1068.35037
[22] Gorenflo, R.; Mainardi, F., Fractional calculus: integral and differential equations of fractional order, (Carpinteri, A.; Mainardi, F., Fractals and fractional calculus in continuum mechanics (1997), Springer: Springer Verlag, Vienna, New York), 223-276 · Zbl 1438.26010
[23] Ahn, V.; McVinisch, R., Fractional differential equations driven by Levy noise, J Appl Math Stoch Anal, 16, 97-119 (2003) · Zbl 1042.60034
[24] Goldstein, J.; N’Guérékata, G., Almost automorphic solutions of semilinear evolution equations, Proc Amer Math Soc, 133, 2401-2408 (2005) · Zbl 1073.34073
[25] N’Guérékata, G., Existence and uniqueness of almost automorphic mild solutions of some semilinear abstract differential equations, Semigroup Forum, 69, 80-86 (2004) · Zbl 1077.47058
[26] Cuevas, C.; Lizama, C., Almost automorphic solutions to a class of semilinear fractional differential equations, Appl Math Lett, 21, 1315-1319 (2008) · Zbl 1192.34006
[27] Agarwal, R.; Andrade, B.; Cuevas, C., On type of periodicity and ergodicity to a class of fractional order differential equations, Adv Differ Equat, 1-25 (2010), Article ID 179750 · Zbl 1194.34007
[28] Agarwal R, Cuevas C, Soto H. Pseudo-almost periodic solutions of a class of semilinear fractional differential equations. J Appl Math Comput. doi:10.1007/s12190-010-0455-y; Agarwal R, Cuevas C, Soto H. Pseudo-almost periodic solutions of a class of semilinear fractional differential equations. J Appl Math Comput. doi:10.1007/s12190-010-0455-y · Zbl 1368.34008
[29] Cuevas, C.; de Souza, J., S-asymptotically \(ω\)-periodic solutions of semilinear fractional integro-differential equations, Appl Math Lett, 22, 865-870 (2009) · Zbl 1176.47035
[30] Cuevas, C.; de Souza, J., Existence of S-asymptotically \(ω\)-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal Theor Methods Appl, 72, 1683-1689 (2010) · Zbl 1197.47063
[31] Agarwal, R.; de Andrade, B.; Cuevas, C., Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear Anal Ser B: RWA, 11, 3532-3554 (2010) · Zbl 1248.34004
[32] Batchelor, M.; Baxter, R.; O’Rourke, M.; Yung, C., Exact solution and interfacial tension of the six-vertex model with anti-periodic boundary conditions, J Phys A, 28, 2759-2770 (1995) · Zbl 0827.60096
[33] Bonilla, L.; Higuera, F., The onset and end of the Gunn effect in extrinsic semiconductors, SIAM J Appl Math, 55, 1625-1649 (1995) · Zbl 0838.35124
[34] Kulshreshtha, D.; Liang, J.; Muller-Kirsten, H., Fluctuation equations about classical field configurations and supersymmetric quantum mechanics, Ann Phys, 225, 191-211 (1993) · Zbl 0774.35074
[35] Aizicovici, S.; McKibben, M.; Reich, S., Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, Nonlinear Anal, 43, 233-251 (2001) · Zbl 0977.34061
[36] Aizicovici, S.; Pavel, N., Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space, J Funct Anal, 99, 387-408 (1991) · Zbl 0743.34067
[37] Aizicovici, S.; Reich, S., Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin Dyn Syst, 5, 35-42 (1999) · Zbl 0961.34044
[38] Chen, Y., Anti-periodic solutions for semilinear evolution equations, J Math Anal Appl, 315, 337-348 (2006) · Zbl 1100.34046
[39] Chen, Y.; Nieto, J.; O’Regan, D., Anti-periodic solutions for full nonlinear first-order differential equations, Math Comput Model, 46, 1183-1190 (2007) · Zbl 1142.34313
[40] Haraux, A., Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math, 63, 479-505 (1989) · Zbl 0684.35010
[41] Okochi, H., On the existence of periodic solutions to nonlinear abstract parabolic equations, J Math Soc Japan, 40, 541-553 (1988) · Zbl 0679.35046
[42] Okochi, H., On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators, J Funct Anal, 91, 246-258 (1990) · Zbl 0735.35071
[43] Okochi, H., On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains, Nonlinear Anal, 14, 771-783 (1990) · Zbl 0715.35091
[44] Liu, Z., Anti-periodic solutions to nonlinear evolution equations, J Funct Anal, 258, 2026-2033 (2010) · Zbl 1184.35184
[45] Wang, Y., Antiperiodic solutions for dissipative evolution equations, Math Comput Model, 51, 715-721 (2010) · Zbl 1190.34068
[46] Haase, M., The functional calculus for sectorial operators, (Operator theory: advances and applications, vol. 169 (2006), Birkhuser Verlag: Birkhuser Verlag Basel) · Zbl 1101.47010
[47] Cuesta, E., Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin Dyn Syst, 277-285 (2007) · Zbl 1163.45306
[48] Bugajewski, D.; Diagana, T., Almost automorphy of the convolution operator and applications to differential and functional differential equations, Nonlinear Stud, 13, 129-140 (2006) · Zbl 1102.44007
[49] Cuevas, C.; Pinto, M., Existence and uniqueness of pseudo almost periodic solutions of semilinear Cauchy problems with non dense domain, Nonlinear Anal, 45, 73-83 (2001) · Zbl 0985.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.