×

Keller-Segel chemotaxis models: a review. (English) Zbl 1464.35001

Summary: We recount and discuss some of the most important methods and blow-up criteria for analyzing solutions of Keller-Segel chemotaxis models. First, we discuss the results concerning the global existence, boundedness and blow-up of solutions to parabolic-elliptic type models. Thereafter we describe the global existence, boundedness and blow-up of solutions to parabolic-parabolic models. The numerical analysis of these models is still at a rather early stage only. We recollect quite a few of the known results on numerical methods also and direct the attention to a number of open problems in this domain.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35A35 Theoretical approximation in context of PDEs
35D30 Weak solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

Chemotaxis
Full Text: DOI

References:

[1] Adler, J., Chemotaxis in bacteria, Annu. Rev. Biochem., 44, 341-356 (1975) · doi:10.1146/annurev.bi.44.070175.002013
[2] Ahn, J.; Kang, K.; Lee, J., Eventual smoothness and stabilization of global weak solutions in parabolic-elliptic chemotaxis systems with logarithmic sensitivity, Nonlinear Anal., 49, 312-330 (2019) · Zbl 1437.35060 · doi:10.1016/j.nonrwa.2019.03.012
[3] Akilandeeswari, A.; Tyagi, J., Nonnegative solutions to time fractional Keller-Segel system, Math. Methods Appl. Sci. (2020) · Zbl 1470.35385 · doi:10.1002/mma.6880
[4] Akhmouch, M.; Amine, M. B., Semi-implicit finite volume schemes for a chemotaxis-growth model, Indag. Math., 27, 702-720 (2016) · Zbl 1382.65265 · doi:10.1016/j.indag.2016.01.004
[5] Andreianov, B.; Bendahmane, M.; Saad, M., Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., 235, 4015-4031 (2011) · Zbl 1228.65179 · doi:10.1016/j.cam.2011.02.023
[6] Arumugam, G.; Erhardt, A. H.; Eswaramoorthy, I.; Krishnan, B., Existence of weak solutions to the Keller-Segel chemotaxis system with additional cross-diffusion, Nonlinear Anal., Real World Appl., 54 (2020) · Zbl 1436.35005 · doi:10.1016/j.nonrwa.2020.103090
[7] Bedrossian, J., Large mass global solutions for a class of \(L^1\)-critical nonlocal aggregation equations and parabolic-elliptic Patlak-Keller-Segel models, Commun. Partial Differ. Equ., 40, 1119-1136 (2015) · Zbl 1350.35189 · doi:10.1080/03605302.2014.999938
[8] Bellomo, N.; Winkler, M., Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Trans. Am. Math. Soc. Ser. B, 4, 31-67 (2017) · Zbl 1367.35044 · doi:10.1090/btran/17
[9] Bellomo, N.; Winkler, M., A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up, Commun. Partial Differ. Equ., 42, 436-473 (2017) · Zbl 1430.35166 · doi:10.1080/03605302.2016.1277237
[10] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[11] Bhuvaneswari, V.; Shangerganesh, L.; Balachandran, K., Global existence and blow up of solutions of quasilinear chemotaxis system, Math. Methods Appl. Sci., 38, 3738-3746 (2015) · Zbl 1375.35006 · doi:10.1002/mma.3313
[12] Biler, P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9, 347-359 (1999) · Zbl 0941.35009
[13] Biler, P.; Woyczynski, W. A., Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59, 845-869 (1998) · Zbl 0940.35035 · doi:10.1137/S0036139996313447
[14] Biler, P.; Zienkiewicz, J., Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data, Bull. Pol. Acad. Sci., Math., 63, 41-51 (2015) · Zbl 1326.35399 · doi:10.4064/ba63-1-6
[15] Biler, P.; Zienkiewicz, J., Blowing up radial solutions in the minimal Keller-Segel model of chemotaxis, J. Evol. Equ., 19, 71-90 (2019) · Zbl 1417.35208 · doi:10.1007/s00028-018-0469-8
[16] Biler, P.; Karch, G.; Pilarczyk, D., Global radial solutions in classical Keller-Segel chemotaxis model, J. Differ. Equ., 267, 6352-6369 (2019) · Zbl 1428.35616 · doi:10.1016/j.jde.2019.06.024
[17] Black, T., Boundedness in a Keller-Segel system with external signal production, J. Math. Anal. Appl., 446, 436-455 (2017) · Zbl 1355.35095 · doi:10.1016/j.jmaa.2016.08.049
[18] Black, T.; Lankeit, J.; Mizukami, M., A Keller-Segel-fluid system with singular sensitivity: generalized solutions, Math. Methods Appl. Sci., 42, 3002-3020 (2019) · Zbl 1418.35222 · doi:10.1002/mma.5561
[19] Blanchet, A.; Dolbeault, J.; Perthame, B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., 2006 (2006) · Zbl 1112.35023
[20] Blanchet, A.; Calvez, V.; Carrillo, J. A., Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46, 691-721 (2008) · Zbl 1205.65332 · doi:10.1137/070683337
[21] Blanchet, A.; Carrillo, J. A.; Laurençot, P., Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var., 35, 33-168 (2009) · Zbl 1172.35035 · doi:10.1007/s00526-008-0200-7
[22] Bonner, J. T., The Cellular Slime Molds (1967), Princeton: Princeton University Press, Princeton · doi:10.1515/9781400876884
[23] Boon, J. P.; Herpigny, B., Model for chemotactic bacterial bands, Bull. Math. Biol., 48, 1-19 (1986) · Zbl 0582.92012 · doi:10.1016/S0092-8240(86)90017-0
[24] Braess, D., Finite Elements, Theory, Fast Solvers, and Applications in Solid Mechanics (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0894.65054
[25] Brenner, S.; Scott, R., The Mathematical Theory of Finite Element Methods (2008), New York: Springer, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[26] Budd, C.; González, R. C.; Russell, R., Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., 202, 463-487 (2005) · Zbl 1063.65096 · doi:10.1016/j.jcp.2004.07.010
[27] Burgerand, M.; Carrillo, J. A.; Wolfram, T., A mixed finite element method for nonlinear diffusion equations, Kinet. Relat. Models, 3, 59-83 (2010) · Zbl 1194.35026 · doi:10.3934/krm.2010.3.59
[28] Calvez, V.; Carrillo, J. A., Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pures Appl., 86, 155-175 (2006) · Zbl 1116.35057 · doi:10.1016/j.matpur.2006.04.002
[29] Calvez, V.; Corrias, L., The parabolic-parabolic Keller-Segel model in \(\mathbb{R}^2 \), Commun. Math. Sci., 6, 417-447 (2008) · Zbl 1149.35360 · doi:10.4310/CMS.2008.v6.n2.a8
[30] Carrillo, J. A.; Hittmeir, S.; Jüngel, A., Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Models Methods Appl. Sci., 22 (2012) · Zbl 1263.35131 · doi:10.1142/S0218202512500418
[31] Chatard, M. B.; Jüngel, A., A finite volume scheme for a Keller-Segel model with additional cross-diffusion, IMA J. Numer. Anal., 34, 96-122 (2014) · Zbl 1309.92035 · doi:10.1093/imanum/drs061
[32] Chavanis, P-H., A stochastic Keller-Segel model of chemotaxis, Commun. Nonlinear Sci. Numer. Simul., 15, 60-70 (2010) · Zbl 1221.60098 · doi:10.1016/j.cnsns.2008.09.002
[33] Chen, Z., Finite Element Methods and Their Applications (2005), Berlin: Springer, Berlin · Zbl 1082.65118
[34] Chertock, A.; Kurganov, A., A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111, 169-205 (2008) · Zbl 1307.92045 · doi:10.1007/s00211-008-0188-0
[35] Chertock, A.; Epshteyn, Y.; Hu, H.; Kurganov, A., High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44, 327-350 (2018) · Zbl 1380.92011 · doi:10.1007/s10444-017-9545-9
[36] Childress, S.; Percus, J. K., Nonlinear aspects of chemotaxis, Math. Biosci., 56, 217-237 (1981) · Zbl 0481.92010 · doi:10.1016/0025-5564(81)90055-9
[37] Chiyoda, Y.; Mizukami, M.; Yokota, T., Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation, Acta Appl. Math. (2019) · Zbl 1439.35085 · doi:10.1007/s10440-019-00275-z
[38] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1988), Amsterdam: North-Holland, Amsterdam
[39] Ciélak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21, 1057-1076 (2008) · Zbl 1136.92006 · doi:10.1088/0951-7715/21/5/009
[40] Cieślak, T.; Stinner, C., Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differ. Equ., 252, 5832-5851 (2012) · Zbl 1252.35087 · doi:10.1016/j.jde.2012.01.045
[41] Cieslak, T.; Winkler, M., Global bounded solutions in a two-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity, Nonlinear Anal., Real World Appl., 35, 1-19 (2017) · Zbl 1364.35124 · doi:10.1016/j.nonrwa.2016.10.002
[42] Cong, W.; Liu, J-G., A degenerate \(p-\) Laplacian Keller-Segel model, Kinet. Relat. Models, 9, 687-714 (2016) · Zbl 1364.35162 · doi:10.3934/krm.2016012
[43] Corrias, L.; Escobedo, M.; Matos, J., Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Differ. Equ., 257, 1840-1878 (2014) · Zbl 1297.35033 · doi:10.1016/j.jde.2014.05.019
[44] DiPietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods (2012), Berlin: Springer, Berlin · Zbl 1231.65209 · doi:10.1007/978-3-642-22980-0
[45] Eisenbach, M., Chemotaxis (2004), London: Imperial College Press, London · doi:10.1142/p303
[46] Epshteyn, Y., Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, Numer. Math., 111, 169-205 (2008) · Zbl 1317.92019 · doi:10.1007/s00211-008-0188-0
[47] Epshteyn, Y., Discontinuous Galerkin methods for the chemotaxis and haptotaxis models, J. Comput. Appl. Math., 224, 168-181 (2009) · Zbl 1157.65449 · doi:10.1016/j.cam.2008.04.030
[48] Epshteyn, Y.; Izmirlioglu, A., Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40, 211-256 (2009) · Zbl 1203.65180 · doi:10.1007/s10915-009-9281-5
[49] Epshteyn, Y.; Kurganov, A., New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47, 386-408 (2008) · Zbl 1183.92010 · doi:10.1137/07070423X
[50] Epshteyn, Y.; Xia, Q., Efficient numerical algorithms based on difference potentials for chemotaxis systems in 3D, J. Sci. Comput., 80, 26-59 (2019) · Zbl 1418.92003 · doi:10.1007/s10915-019-00928-z
[51] Espejo, E.; Winkler, M., Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization, Nonlinearity, 31, 1227-1259 (2018) · Zbl 1392.35042 · doi:10.1088/1361-6544/aa9d5f
[52] Filbet, F., A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104, 457-488 (2006) · Zbl 1098.92006 · doi:10.1007/s00211-006-0024-3
[53] Freitag, M., Global existence and boundedness in a chemorepulsion system with superlinear diffusion, Discrete Contin. Dyn. Syst., 38, 5943-5961 (2018) · Zbl 1400.35160 · doi:10.3934/dcds.2018258
[54] Fuest, M., Finite-time blow-up in a two-dimensional Keller-Segel system with an environmental dependent logistic source, Nonlinear Anal., Real World Appl., 52 (2020) · Zbl 1471.92060 · doi:10.1016/j.nonrwa.2019.103022
[55] Fuest, M., Blow-up profiles in quasilinear fully parabolic Keller-Segel systems, Nonlinearity, 33, 2306-2334 (2020) · Zbl 1481.35084 · doi:10.1088/1361-6544/ab7294
[56] Fujie, K., Boundedness in a fully parabolic-chemotaxis system singular sensitivity, J. Math. Anal. Appl., 424, 675-684 (2015) · Zbl 1310.35144 · doi:10.1016/j.jmaa.2014.11.045
[57] Fujie, K.: Study of Reaction-Diffusion Systems Modeling Chemotaxis. Doctoral thesis (2016)
[58] Fujie, K.; Yokota, T., Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38, 140-143 (2014) · Zbl 1354.92009 · doi:10.1016/j.aml.2014.07.021
[59] Fujie, K.; Winkler, M.; Yokota, T., Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109, 56-71 (2014) · Zbl 1297.35051 · doi:10.1016/j.na.2014.06.017
[60] Fujie, K.; Winkler, M.; Yokota, T., Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Models Methods Appl. Sci., 38, 1212-1224 (2015) · Zbl 1329.35011 · doi:10.1002/mma.3149
[61] Galakhov, E.; Salieva, O.; Tello, J. I., On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differ. Equ., 261, 4631-4647 (2016) · Zbl 1347.35090 · doi:10.1016/j.jde.2016.07.008
[62] Ganesan, S.; Tobiska, L., Finite Elements: Theory and Algorithms (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1382.65396 · doi:10.1017/9781108235013
[63] Gao, H.; Fu, S.; Mohammed, H., Existence of global solution to a two-species Keller-Segel chemotaxis model, Int. J. Biomath., 11 (2018) · Zbl 1385.92010 · doi:10.1142/S1793524518500365
[64] Godlewski, E.; Raviart, P-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996), New York: Springer, New York · Zbl 0860.65075 · doi:10.1007/978-1-4612-0713-9
[65] Guo, L.; Li, X. H.; Yang, Y., Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model, J. Sci. Comput., 78, 1387-1404 (2019) · Zbl 1419.65061 · doi:10.1007/s10915-018-0813-8
[66] Gurusamy, A.; Balachandran, K., Finite element method for solving Keller-Segel chemotaxis system with cross-diffusion, Int. J. Dyn. Control, 6, 539-549 (2018) · doi:10.1007/s40435-017-0335-5
[67] Hashira, T.; Ishida, S.; Yokota, T., Finite time blow- up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equ., 264, 6459-6485 (2018) · Zbl 1394.35253 · doi:10.1016/j.jde.2018.01.038
[68] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms: Analysis, and Applications (2008), New York: Springer, New York · Zbl 1134.65068
[69] Hillen, T.; Painter, K., Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26, 280-301 (2001) · Zbl 0998.92006 · doi:10.1006/aama.2001.0721
[70] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 183-217 (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[71] Hittmeir, S.; Jungel, A., Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model, SIAM J. Math. Anal., 43, 997-1022 (2011) · Zbl 1259.35114 · doi:10.1137/100813191
[72] Horstmann, D., The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results, Nonlinear Differ. Equ. Appl., 8, 399-423 (2001) · Zbl 1056.35086 · doi:10.1007/PL00001455
[73] Horstmann, D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver., 105, 103-165 (2003) · Zbl 1071.35001
[74] Horstmann, D.; Wang, G., Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12, 159-177 (2001) · Zbl 1017.92006 · doi:10.1017/S0956792501004363
[75] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[76] Horstmann, D.; Meinlschmidt, H.; Rehberg, J., The full Keller-Segel model is well-posed on nonsmooth domains, Nonlinearity, 31, 1560-1592 (2018) · Zbl 1421.35003 · doi:10.1088/1361-6544/aaa2e1
[77] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differ. Equ., 252, 2469-2491 (2012) · Zbl 1241.35118 · doi:10.1016/j.jde.2011.08.047
[78] Ishida, S.; Yokota, T., Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equ., 252, 1421-1440 (2012) · Zbl 1237.35093 · doi:10.1016/j.jde.2011.02.012
[79] Ishida, S.; Yokota, T., Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst., Ser. B, 18, 2569-2596 (2013) · Zbl 1277.35071
[80] Ishida, S.; Ono, T.; Tokota, T., Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36, 745-760 (2013) · Zbl 1272.35045 · doi:10.1002/mma.2622
[81] Ishida, S.; Seki, K.; Yokota, T., Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[82] Jiang, J.; Wu, H.; Zheng, S., Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, J. Differ. Equ., 264, 5432-5464 (2018) · Zbl 1391.35076 · doi:10.1016/j.jde.2018.01.004
[83] Jin, H. Y.; Kim, Y. J.; Wang, Z. A., Boundedness, stabilization and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78, 1632-1657 (2018) · Zbl 1393.35100 · doi:10.1137/17M1144647
[84] Jüngel, A.; Leingang, O.; Wang, S., Vanishing cross-diffusion limit in a Keller-Segel system with additional cross-diffusion, Nonlinear Anal., 192 (2020) · Zbl 1439.35030 · doi:10.1016/j.na.2019.111698
[85] Kang, K.; Kim, K.; Yoon, C., Existence of weak and regular solutions for Keller-Segel system with degradation coupled to fluid equations, J. Math. Anal. Appl., 485 (2020) · Zbl 1478.35093 · doi:10.1016/j.jmaa.2019.123750
[86] Keller, E. F.; Segel, L. A., Initiation of some mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[87] Keller, E. F.; Segel, L. A., Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30, 377-380 (1971) · Zbl 1170.92308
[88] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theor. Biol., 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[89] Kowalczyk, R.; Szymanska, Z., On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343, 379-398 (2008) · Zbl 1143.35333 · doi:10.1016/j.jmaa.2008.01.005
[90] Kozono, H.; Sugiyama, Y., The Keller-Segel system of parabolic-parabolic type with initial data in weak \(L^{n/2}(\mathbb{R}^n)\) and its application to self-similar solutions, Indiana Univ. Math. J., 57, 1467-1500 (2008) · Zbl 1158.35101 · doi:10.1512/iumj.2008.57.3316
[91] Kozono, H.; Sugiyama, Y., Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces, J. Differ. Equ., 247, 1-32 (2009) · Zbl 1207.35178 · doi:10.1016/j.jde.2009.03.027
[92] Kozono, H.; Miura, M.; Sugiyama, Y., Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal., 270, 1663-1683 (2016) · Zbl 1343.35069 · doi:10.1016/j.jfa.2015.10.016
[93] Lai, Y., Xiao, Y.: Existence and asymptotic behavior of global solutions to chemorepulsion systems with nonlinear sensitivity. Electron. J. Differ. Equ., 254 (2017) · Zbl 1372.35312
[94] Lankeit, J., Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., 258, 1158-1191 (2015) · Zbl 1319.35085 · doi:10.1016/j.jde.2014.10.016
[95] Lankeit, J., New approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39, 394-404 (2016) · Zbl 1333.35100 · doi:10.1002/mma.3489
[96] Lankeit, J., Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differ. Equ., 262, 4052-4084 (2017) · Zbl 1359.35103 · doi:10.1016/j.jde.2016.12.007
[97] Lankeit, E.; Lankeit, J., On the global generalized solvability of a chemotaxis model with signal absorption and logistic growth terms, Nonlinearity, 32, 1569-1596 (2019) · Zbl 1414.35240 · doi:10.1088/1361-6544/aaf8c0
[98] Lankeit, E.; Lankeit, J., Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal., Real World Appl., 46, 421-445 (2019) · Zbl 1414.35239 · doi:10.1016/j.nonrwa.2018.09.012
[99] Lankeit, J.; Winkler, M., A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data, Nonlinear Differ. Equ. Appl., 24, 24-49 (2017) · Zbl 1373.35166 · doi:10.1007/s00030-017-0472-8
[100] Lankeit, J.; Winkler, M., Facing low regularity in chemotaxis systems, Jahresber. Dtsch. Math.-Ver., 122, 35-64 (2020) · Zbl 1436.92004 · doi:10.1365/s13291-019-00210-z
[101] Laurençot, P.; Mizoguchi, N., Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. Henri Poincaré A, Phys. Théor., 34, 197-220 (2017) · Zbl 1357.35060
[102] Li, X., On a fully parabolic chemotaxis system with nonlinear signal secretion, Nonlinear Anal., Real World Appl., 49, 24-44 (2019) · Zbl 1437.35121 · doi:10.1016/j.nonrwa.2019.02.005
[103] Li, X., Global classical solutions in a Keller-Segel(-Navier)-Stokes system modeling coral fertilization, J. Differ. Equ., 267, 6290-6315 (2019) · Zbl 1420.35124 · doi:10.1016/j.jde.2019.06.021
[104] Li, Y., Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production, J. Math. Anal. Appl., 480, 1 (2019) · Zbl 1429.35035 · doi:10.1016/j.jmaa.2019.123376
[105] Li, Y., On a Keller-Segel-Stokes system with logistic type growth: blow-up prevention enforced by sublinear signal production, Z. Angew. Math. Phys., 70, 157 (2019) · Zbl 1442.35201 · doi:10.1007/s00033-019-1202-3
[106] Li, H.; Zhao, K., Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differ. Equ., 258, 302-308 (2015) · Zbl 1327.35167 · doi:10.1016/j.jde.2014.09.014
[107] Li, D.; Li, T.; Zhao, K., On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21, 1631-1650 (2011) · Zbl 1230.35070 · doi:10.1142/S0218202511005519
[108] Li, X. H.; Shu, C.-W.; Yang, Y., Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73, 943-967 (2017) · Zbl 1384.92015 · doi:10.1007/s10915-016-0354-y
[109] Lina, K.; Mub, C.; Zhong, H., A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl., 464, 435-455 (2018) · Zbl 1391.35377 · doi:10.1016/j.jmaa.2018.04.015
[110] Liu, J-G.; Wang, J., A note on \(L^{\infty }\)-bound and uniqueness to a degenerate Keller-Segel model, Acta Appl. Math., 142, 173-188 (2016) · Zbl 1335.35103 · doi:10.1007/s10440-015-0022-5
[111] Marrocco, A., Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, Modél. Math. Anal. Numér., 4, 617-630 (2003) · Zbl 1065.92006 · doi:10.1051/m2an:2003048
[112] Mimura, Y., The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion, J. Differ. Equ., 263, 1477-1521 (2017) · Zbl 1439.35296 · doi:10.1016/j.jde.2017.03.020
[113] Mizoguchi, N., Type II blowup in the doubly parabolic Keller-Segel system in the two dimension, J. Funct. Anal., 271, 3323-3347 (2016) · Zbl 1456.35048 · doi:10.1016/j.jfa.2016.09.016
[114] Mizoguchi, N.; Souplet, P., Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. Henri Poincaré A, Phys. Théor., 31, 851-875 (2014) · Zbl 1302.35075
[115] Mizukami, M., Determination of blowup type in the parabolic-parabolic Keller-Segel system, Math. Ann., 376, 39-60 (2020) · Zbl 1435.35084 · doi:10.1007/s00208-018-1772-y
[116] Mizukami, M.; Yokota, T., A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity, Math. Nachr., 290, 1-13 (2017) · Zbl 1379.35162 · doi:10.1002/mana.201600399
[117] Mizukami, M., Ono, T., Yokota, T.: Extensibility criterion ruling out gradient blow-up in a quasilinear degenerate chemotaxis system. Preprint. arXiv:1903.00124 · Zbl 1475.35060
[118] Mu, C.; Wang, L.; Zheng, P.; Zhang, Q., Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal., Real World Appl., 14, 1634-1642 (2013) · Zbl 1261.35072 · doi:10.1016/j.nonrwa.2012.10.022
[119] Murray, J. D., Mathematical Biology II. Spatial Models and Biomedical Applications (2003), Berlin: Springer, Berlin · Zbl 1006.92002 · doi:10.1007/b98869
[120] Nagai, T., Global existence of solutions to a parabolic system for chemotaxis in two space dimensions, Nonlinear Anal., Theory Methods Appl., 30, 5381-5388 (1997) · Zbl 0892.35082 · doi:10.1016/S0362-546X(97)00395-7
[121] Nagai, T., Global existence and blow-up of solutions to a chemotaxis system, Nonlinear Anal., 47, 777-787 (2001) · Zbl 1042.35574 · doi:10.1016/S0362-546X(01)00222-X
[122] Nakaguchi, E.; Yagi, Y., Fully discrete approximation by Galerkin Runge-Kutta methods for quasilinear parabolic systems, Hokkaido Math. J., 31, 385-429 (2002) · Zbl 1011.65067 · doi:10.14492/hokmj/1350911871
[123] Nanjundiah, V., Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42, 63-105 (1973) · doi:10.1016/0022-5193(73)90149-5
[124] Nasreddine, E., Global existence of solutions to a parabolic-elliptic chemotaxis system with critical degenerate diffusion, J. Math. Anal. Appl., 417, 144-163 (2014) · Zbl 1310.35068 · doi:10.1016/j.jmaa.2014.02.069
[125] Negreanu, M.; Tello, J. I., On a parabolic-elliptic system with gradient dependent chemotactic coefficient, J. Differ. Equ., 265, 733-751 (2018) · Zbl 1391.35186 · doi:10.1016/j.jde.2018.01.040
[126] Negreanu, M.; Tello, J. I., Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals, J. Math. Anal. Appl., 474, 1116-1131 (2019) · Zbl 1416.35280 · doi:10.1016/j.jmaa.2019.02.007
[127] Painter, K. J., Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theor. Biol., 481, 162-182 (2019) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[128] Painter, K.; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10, 501-543 (2001) · Zbl 1057.92013
[129] Patlak, C. S., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044 · doi:10.1007/BF02476407
[130] Payne, L. E.; Song, J. C., Blow-up and decay criteria for a model of chemotaxis, J. Math. Anal. Appl., 367, 1-6 (2010) · Zbl 1195.35058 · doi:10.1016/j.jmaa.2009.11.025
[131] Payne, L. E.; Song, J. C., Lower bounds for blow-up in a model of chemotaxis, J. Math. Anal. Appl., 385, 672-676 (2012) · Zbl 1231.35027 · doi:10.1016/j.jmaa.2011.06.086
[132] Payne, L. E.; Straughan, B., Decay for a Keller-Segel chemotaxis model, Stud. Appl. Math., 123, 337-360 (2009) · Zbl 1180.35529 · doi:10.1111/j.1467-9590.2009.00457.x
[133] Prudhomme, S., Pascal, F., Oden, J.T., Romkes, A.: Review of a priori error estimation for discontinuous Galerkin Methods. Technical report, TICAM Report 00-27, Texas Institute for Computational and Applied Mathematics, Austin, TX (2000) · Zbl 1007.65084
[134] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), Philadelphia: SIAM, Philadelphia · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[135] Saito, N., Conservative upwind finite element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27, 332-365 (2007) · Zbl 1119.65094 · doi:10.1093/imanum/drl018
[136] Saito, N., Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôky��roku Bessatsu, 15, 125-146 (2009) · Zbl 1192.65131
[137] Saito, N., Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11, 339-364 (2012) · Zbl 1264.65148 · doi:10.3934/cpaa.2012.11.339
[138] Saito, N.; Suzuki, T., Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171, 72-90 (2005) · Zbl 1086.65089
[139] Salako, R. B.; Shen, W., Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on \(\mathbb{R}^N \), J. Differ. Equ., 262, 5635-5690 (2017) · Zbl 1373.35051 · doi:10.1016/j.jde.2017.02.011
[140] Salako, R. B.; Shen, W., Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^N \). I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28, 2237-2273 (2018) · Zbl 1426.35034 · doi:10.1142/S0218202518400146
[141] Salako, R. B.; Shen, W., Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^N \). II. Existence, uniqueness, and stability of strictly positive entire solutions, J. Math. Anal. Appl., 464, 883-910 (2018) · Zbl 1390.35379 · doi:10.1016/j.jmaa.2018.04.034
[142] Salako, R.B., Shen, W.: Parabolic-elliptic chemotaxis model with space-time dependent logistic sources on \(\mathbb{R}^N\) III. Transition fronts (2018) · Zbl 1426.35034
[143] Senba, T.; Suzuki, T., Parabolic system of chemotaxis: blow-up in a finite and the infinite time, Math. Methods Appl. Sci., 8, 349-367 (2001) · Zbl 1056.92007
[144] Shangerganesh, L.; Barani Balan, N.; Balachandran, K., Existence and uniqueness of solutions of degenerate chemotaxis system, Taiwan. J. Math., 18, 1605-1622 (2014) · Zbl 1357.35267 · doi:10.11650/tjm.18.2014.3080
[145] Souplet, P.; Winkler, M., Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions \(n\geqslant 3\), Commun. Math. Phys., 367, 665-681 (2019) · Zbl 1411.35140 · doi:10.1007/s00220-018-3238-1
[146] Stinner, C.; Winkler, M., Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal., Real World Appl., 12, 3727-3740 (2011) · Zbl 1268.35072
[147] Strehl, R.; Sokolov, A.; Turek, S., Efficient, accurate and flexible finite element solvers for chemotaxis problems, Comput. Math. Appl., 64, 175-189 (2012) · Zbl 1252.92014 · doi:10.1016/j.camwa.2011.12.040
[148] Strehl, R.; Sokolov, A.; Kuzmin, D.; Horstmann, D.; Turek, S., A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239, 290-303 (2013) · Zbl 1316.92015 · doi:10.1016/j.cam.2012.09.041
[149] Sugiyama, Y., Global existence and decay properties of solutions for some degenerate quasilinear parabolic systems modelling chemotaxis, Nonlinear Anal., 63, 1051-1062 (2005) · Zbl 1224.35207 · doi:10.1016/j.na.2005.03.020
[150] Sugiyama, Y., Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system, Differ. Integral Equ., 19, 841-876 (2006) · Zbl 1212.35240
[151] Sugiyama, Y., Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differ. Integral Equ., 20, 133-180 (2007) · Zbl 1212.35241
[152] Sugiyama, Y.; Kunii, H., Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differ. Equ., 227, 333-364 (2006) · Zbl 1102.35046 · doi:10.1016/j.jde.2006.03.003
[153] Sugiyama, Y.; Tsutsui, Y.; Velázquez, J. J.L., Global solutions to a chemotaxis system with non-diffusive memory, J. Math. Anal. Appl., 410, 908-917 (2014) · Zbl 1333.92014 · doi:10.1016/j.jmaa.2013.08.065
[154] Tan, Z.; Zhou, J., Global existence and time decay estimate of solutions to the Keller-Segel system, Math. Methods Appl. Sci., 42, 375-402 (2019) · Zbl 1407.35107 · doi:10.1002/mma.5352
[155] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[156] Tao, Y.; Winkler, M., Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66, 2555-2573 (2015) · Zbl 1328.35084 · doi:10.1007/s00033-015-0541-y
[157] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel type reaction-diffusion system, Math. Methods Appl. Sci., 27, 1645-1683 (2017) · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[158] Tao, Y.; Winkler, M., Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27, 1645-1683 (2017) · Zbl 1516.35092 · doi:10.1142/S0218202517500282
[159] Tao, Y.; Winkler, M., Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differ. Equ., 267, 388-406 (2019) · Zbl 1411.35146 · doi:10.1016/j.jde.2019.01.014
[160] Tao, Y.; Wang, L. H.; Wang, Z. A., Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst., Ser. B, 18, 821-845 (2013) · Zbl 1272.35040
[161] Tao, X.; Zhou, S.; Ding, M., Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production, J. Math. Anal. Appl., 474, 733-747 (2019) · Zbl 1483.35111 · doi:10.1016/j.jmaa.2019.01.076
[162] Tello, J. I.; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 849-877 (2007) · Zbl 1121.37068 · doi:10.1080/03605300701319003
[163] Thomee, V., Galerkin Finite Element Methods for Parabolic Problems (2006), Berlin: Springer, Berlin · Zbl 1105.65102
[164] Viglialoro, G., Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439, 197-212 (2016) · Zbl 1386.35163 · doi:10.1016/j.jmaa.2016.02.069
[165] Viglialoro, G.; Woolley, T. E., Solvability of a Keller-Segel system with signal-dependent sensitivity and essentially sublinear production, Appl. Anal., 99, 14, 2507-2525 (2019) · Zbl 1447.35009 · doi:10.1080/00036811.2019.1569227
[166] Wang, Y., Global bounded weak solutions to a degenerate quasilinear chemotaxis system with rotation, Math. Methods Appl. Sci., 39, 1159-1175 (2016) · Zbl 1335.35107 · doi:10.1002/mma.3561
[167] Wang, J.; Wang, M., Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth, J. Math. Phys., 60 (2019) · Zbl 1406.35154 · doi:10.1063/1.5061738
[168] Wang, Y.; Xiang, Z., Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation: the 3D case, J. Differ. Equ., 261, 4944-4973 (2016) · Zbl 1345.35054 · doi:10.1016/j.jde.2016.07.010
[169] Wang, L.; Li, Y.; Mu, C., Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34, 789-802 (2014) · Zbl 1277.35215 · doi:10.3934/dcds.2014.34.789
[170] Wang, Y.; Winkler, M.; Xiang, Z., Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XVIII, 421-466 (2018) · Zbl 1395.92024
[171] Wang, J.; Li, Y.; Chen, L., Supercritical degenerate parabolic-parabolic Keller-Segel system: existence criterion given by the best constant in Sobolev’s inequality, Z. Angew. Math. Phys., 70, 71 (2019) · Zbl 1415.35159 · doi:10.1007/s00033-019-1115-1
[172] Wang, Y.; Winkler, M.; Xiang, Z., The fast signal diffusion limit in Keller-Segel(-fluid) systems, Calc. Var., 58, 196 (2019) · Zbl 1426.92009 · doi:10.1007/s00526-019-1656-3
[173] Winkler, M., Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 708-729 (2008) · Zbl 1147.92005 · doi:10.1016/j.jmaa.2008.07.071
[174] Winkler, M., Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248, 2889-2905 (2010) · Zbl 1190.92004 · doi:10.1016/j.jde.2010.02.008
[175] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190 (2010) · Zbl 1291.92018 · doi:10.1002/mma.1346
[176] Winkler, M., Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33, 12-24 (2010) · Zbl 1182.35220 · doi:10.1002/mma.1146
[177] Winkler, M., Absence of collapse in a parabolic chemotaxis system with signal- dependent sensitivity, Math. Nachr., 283, 1664-1673 (2010) · Zbl 1205.35037 · doi:10.1002/mana.200810838
[178] Winkler, M., Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34, 176-190 (2011) · Zbl 1291.92018 · doi:10.1002/mma.1346
[179] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[180] Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[181] Winkler, M., Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var., 54, 3789-3828 (2015) · Zbl 1333.35104 · doi:10.1007/s00526-015-0922-2
[182] Winkler, M., How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, J. Funct. Anal., 270, 1663-1683 (2016) · Zbl 1343.35069 · doi:10.1016/j.jfa.2015.10.016
[183] Winkler, M., The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: global large-data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26, 987-1024 (2016) · Zbl 1383.35099 · doi:10.1142/S0218202516500238
[184] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. Henri Poincaré, 33, 1329-1352 (2016) · Zbl 1351.35239 · doi:10.1016/j.anihpc.2015.05.002
[185] Winkler, M., Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst., Ser. B, 22, 2777-2793 (2017) · Zbl 1377.35158
[186] Winkler, M., Renormalized radial large-data solutions to the higher-dimensional Keller-Segel system with singular sensitivity and signal absorption, J. Differ. Equ., 264, 2310-2350 (2018) · Zbl 1378.35165 · doi:10.1016/j.jde.2017.10.029
[187] Winkler, M., Does fluid interaction affect regularity in the three-dimensional Keller-Segel system with saturated sensitivity?, J. Math. Fluid Mech., 20, 1889-1909 (2018) · Zbl 1409.35047 · doi:10.1007/s00021-018-0395-0
[188] Winkler, M., Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69, 40 (2018) · Zbl 1395.35048 · doi:10.1007/s00033-018-0935-8
[189] Winkler, M., Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equ., 18, 1267-1289 (2018) · Zbl 1404.35464 · doi:10.1007/s00028-018-0440-8
[190] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Ann. Inst. Henri Poincaré, 36, 1747-1790 (2019) · Zbl 1428.35611 · doi:10.1016/j.anihpc.2019.02.004
[191] Winkler, M., Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, J. Differ. Equ., 266, 8034-8066 (2019) · Zbl 1415.35052 · doi:10.1016/j.jde.2018.12.019
[192] Winkler, M., Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems?, Int. Math. Res. Not. (2019) · Zbl 1483.35294 · doi:10.1093/imrn/rnz056
[193] Winkler, M., How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two-and higher-dimensional parabolic-elliptic cases, Math. Ann., 373, 1237-1282 (2019) · Zbl 1416.35049 · doi:10.1007/s00208-018-1722-8
[194] Winkler, M., Does repulsion-type directional preference in chemotactic migration continue to regularize Keller-Segel systems when coupled to the Navier-Stokes equations?, Nonlinear Differ. Equ. Appl., 26 (2019) · Zbl 1429.92042 · doi:10.1007/s00030-019-0600-8
[195] Winkler, M., Instantaneous regularization of distributions from \((C^0)^* \times L^2\) in the one-dimensional parabolic Keller-Segel system, Nonlinear Anal., 183, 102-116 (2019) · Zbl 1428.35632 · doi:10.1016/j.na.2019.01.017
[196] Winkler, M., A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: global weak solutions and asymptotic stabilization, J. Funct. Anal., 276, 1339-1401 (2019) · Zbl 1408.35132 · doi:10.1016/j.jfa.2018.12.009
[197] Winkler, M., Does repulsion-type directional preference in chemotactic migration continue to regularize Keller-Segel systems when coupled to the Navier-Stokes equations?, Nonlinear Differ. Equ. Appl., 26 (2019) · Zbl 1429.92042 · doi:10.1007/s00030-019-0600-8
[198] Winkler, M., Boundedness in a two-dimensional Keller-Segel-Navier-Stokes system involving a rapidly diffusing repulsive signal, Z. Angew. Math. Phys., 71, 10 (2020) · Zbl 1432.92021 · doi:10.1007/s00033-019-1232-x
[199] Winkler, M., Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, J. Anal. Math., 141, 585-624 (2020) · Zbl 1459.92019 · doi:10.1007/s11854-020-0109-4
[200] Winkler, M.; Djie, K. C., Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72, 1044-1064 (2010) · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[201] Winkler, M.; Yokota, T., Stabilization in the logarithmic Keller-Segel system, Nonlinear Anal., 170, 123-141 (2018) · Zbl 1391.35066 · doi:10.1016/j.na.2018.01.002
[202] Wrzosek, D., Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59, 1293-1310 (2004) · Zbl 1065.35072 · doi:10.1016/j.na.2004.08.015
[203] Wu, G.; Zheng, X., On the well-posedness for Keller-Segel system with fractional diffusion, Math. Methods Appl. Sci., 34, 1739-1750 (2011) · Zbl 1229.35314 · doi:10.1002/mma.1480
[204] Xiang, T., Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with or without growth source, J. Differ. Equ., 258, 4275-4323 (2015) · Zbl 1323.35072 · doi:10.1016/j.jde.2015.01.032
[205] Xiang, T., How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459, 1172-1200 (2018) · Zbl 1380.35032 · doi:10.1016/j.jmaa.2017.11.022
[206] Xiang, T., Chemotactic aggregation versus logistic damping on boundedness in the \(3D\) minimal Keller-Segel model, SIAM J. Appl. Math., 78, 2420-2438 (2018) · Zbl 1397.35125 · doi:10.1137/17M1150475
[207] Xiang, T., Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system, J. Math. Phys., 59 (2018) · Zbl 1395.92025 · doi:10.1063/1.5018861
[208] Xinhua, Z.; Song, J., Globally bounded in-time solutions to a parabolic-elliptic system modelling chemotaxis, Acta Math. Sci., 27, 421-429 (2007) · Zbl 1125.35016 · doi:10.1016/S0252-9602(07)60042-3
[209] Yan, J.; Li, Y., Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity, Nonlinear Anal., 176, 288-302 (2018) · Zbl 1401.35170 · doi:10.1016/j.na.2018.06.016
[210] Yokota, T.; Yoshino, N., Existence of solutions to chemotaxis dynamics with Lipschitz diffusion and superlinear growth, J. Math. Anal. Appl., 419, 756-774 (2014) · Zbl 1295.35257 · doi:10.1016/j.jmaa.2014.04.069
[211] Yoon, C.; Kim, Y-J., Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl. Math., 149, 101-123 (2017) · Zbl 1398.35110 · doi:10.1007/s10440-016-0089-7
[212] Yu, H.; Wang, W.; Zheng, S., Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity, J. Math. Anal. Appl., 461, 1748-1770 (2018) · Zbl 1390.35381 · doi:10.1016/j.jmaa.2017.12.048
[213] Zhang, R.; Zhu, J.; Loula, A. F.D.; Yu, X., Operator splitting combined with positivity-preserving discontinuous Galerkin method for the chemotaxis model, J. Comput. Appl. Math., 302, 312-326 (2016) · Zbl 1382.65333 · doi:10.1016/j.cam.2016.02.018
[214] Zhang, J.; Zhu, J.; Zhang, R., Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models, Appl. Math. Comput., 278, 33-44 (2016) · Zbl 1410.65385
[215] Zhao, J., Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces, Ann. Mat. Pura Appl., 197, 521-548 (2018) · Zbl 1394.35068 · doi:10.1007/s10231-017-0691-y
[216] Zhao, X.; Zheng, S., Global existence and asymptotic behavior to achemotaxis-consumption system with singular sensitivity and logistic source, Nonlinear Anal., Real World Appl., 42, 120-139 (2018) · Zbl 1516.35102 · doi:10.1016/j.nonrwa.2017.12.007
[217] Zhao, J.; Mu, C. L.; Wang, L. C.; Lin, K., A quasilinear parabolic-elliptic chemotaxis-growth system with nonlinear secretion, Appl. Anal. (2018) · Zbl 1453.92052 · doi:10.1080/00036811.2018.1489955
[218] Zheng, J.; Ke, Y., Blow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, J. Differ. Equ., 268, 7092-7120 (2020) · Zbl 1445.35290 · doi:10.1016/j.jde.2019.11.071
[219] Zheng, P.; Mu, C.; Hu, X.; Tian, Y., Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424, 509-522 (2015) · Zbl 1307.35069 · doi:10.1016/j.jmaa.2014.11.031
[220] Zhou, G.; Saito, N., Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., 135, 265-311 (2017) · Zbl 1360.65225 · doi:10.1007/s00211-016-0793-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.