×

A \(C^0\) virtual element method for the biharmonic eigenvalue problem. (English) Zbl 1480.65324

Summary: From the eigenvalue problem theory, we see that the convergence rate of the biharmonic eigenvalues obtained by the mixed method in [I. Babuška and J. Osborn, Handb. Numer. Anal. 2, 641–787 (1991; Zbl 0875.65087)] is \(h^{2k-2}\) for \(k \geq 2\). In this paper, we give a presentation of the lowest-order virtual element method for the approximation of Kirchhoff plate vibration problem. This discrete scheme is based on a conforming \(H^1 (\Omega) \times H^1 (\Omega)\) formulation, following the variational formulation of Ciarlet-Raviart method, which allows us to make use of simpler and lower-regularity virtual element space. By using the classical spectral approximation theory in functional analysis, we prove the spectral approximation and optimal convergence order \(h^2\) for the eigenvalues. Finally, some numerical experiments are presented, which show that the proposed numerical scheme can achieve the optimal convergence order.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Citations:

Zbl 0875.65087
Full Text: DOI

References:

[1] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projections for virtual element methods, Comput. Math. Appl., 66, 3, 376-391 (2013) · Zbl 1347.65172
[2] Andreev, A. B.; Lazarov, R. D.; Racheva, M. R., Postprocessing and higher order convergence of mixed finite element approximations of biharmonic eigenvalue problem, J. Comput. Appl. Math., 182, 2, 333-349 (2005) · Zbl 1075.65136
[3] Antonietti, P. F.; Beirão Da Veiga, L.; Scacchi, S.; Verani, M., A \(####\) virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal., 54, 1, 34-56 (2016) · Zbl 1336.65160
[4] Argyris, J. H.; Fried, I.; Scharpf, D. W., The TUBA family of plate elements for the matrix displacement method, Aero. J. Roy. Aero. Soc., 72, 692, 701-709 (1968)
[5] Artioli, E.; De Miranda, S.; Lovadina, C.; Patruno, L., A stress/displacement virtual element method for plane elasticity problems, Comput. Meth. Appl. Mech. Engrg., 325, 155-174 (2017) · Zbl 1439.74040
[6] Babska, I. and Osborn, J, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991.
[7] Beirão Da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[8] Beirão Da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., H(div) and H(curl)-conforming VEM, Numer. Math., 133, 303-332 (2015) · Zbl 1343.65133
[9] Beirão Da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM Math. Model. Numer. Anal., 50, 3, 727-747 (2016) · Zbl 1343.65134
[10] Beirão Da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Virtual element methods for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 4, 729-750 (2016) · Zbl 1332.65162
[11] Beirão Da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 5, 1110-1122 (2017) · Zbl 1448.65215
[12] Beirão Da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51, 2, 509-535 (2017) · Zbl 1398.76094
[13] Beirão Da Veiga, L.; Manzini, G., A virtual element method with arbitrary regularity, IMA J. Numer. Anal., 34, 2, 759-781 (2014) · Zbl 1293.65146
[14] Beirão Da Veiga, L.; Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the acoustic vibration problem, Numer. Math., 136, 725-763 (2017) · Zbl 1397.76059
[15] Beirão Da Veiga, L.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM Math. Model. Numer. Anal., 53, 2, 375-404 (2019) · Zbl 1426.65163
[16] Benedetto, M. F.; Berrone, S.; Borio, A.; Pieraccini, S.; Scialò, S., A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306, 148-166 (2016) · Zbl 1351.76048
[17] Benedetto, M. F.; Berrone, S.; Borio, A.; Pieraccini, S.; Scialò, S., Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 311, 18-40 (2016) · Zbl 1439.76051
[18] Brenner, S. C.; Monk, P.; Sun, J., \(####\) interior penalty Galerkin method for biharmonic eigenvalue problems, Lect. Notes Comput. Sci. Eng., 106, 3-15 (2015) · Zbl 1349.65439
[19] Brenner, S.C. and Scott, R.L.. The Mathematical Theory of Finite Element Methods, Texts Appl. Math, Vol. 15, Springer-Verlag, New York, 2008. · Zbl 1135.65042
[20] Brezzi, F.; Falk, R. S.; Marini, L. D., Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48, 4, 1227-1240 (2014) · Zbl 1299.76130
[21] Cáceres, E.; Gatica, G. N., A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal., 37, 1, 296-331 (2017) · Zbl 1433.76071
[22] Cáceres, E.; Gatica, G. N.; Sequeira, F. A., A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci., 27, 4, 707-743 (2017) · Zbl 1432.65167
[23] Cangiani, A.; Gardini, F.; Manzini, G., Convergence of the mimetic finite difference method for eigenvalue problems in mixed form, Comput. Methods Appl. Mech. Engrg., 200, 9-12, 1150-1160 (2011) · Zbl 1225.65106
[24] Čertík, O.; Gardini, F.; Manzini, G.; Mascotto, L.; Vacca, G., The virtual element method for eigenvalue problems with potential terms on polytopic meshes, Appl. Math., 63, 3, 333-365 (2018) · Zbl 1488.65196
[25] Ciarlet, P.G., Basic error estimates for elliptic problems, Handbook of Numerical Analysis, Vol. 2, 1991, pp. 17-351, Available at doi:10.1016/S1570-8659(05)80039-0 · Zbl 0875.65086
[26] Ciarlet, P.G., Raviart, P.A., A mixed finite element method for the biharmonic equation, Math. Aspects Finite Elements Partial Diff. Equ. (1974), pp. 125-145. Available at https://doi.org/10.1016/B978-0-12-208350-1.50009-1 · Zbl 0337.65058
[27] Gardini, F.; Manzini, G.; Vacca, G., The nonconforming virtual element method for eigenvalue problems, ESAIM Math. Model. Numer. Anal., 53, 3, 749-774 (2019) · Zbl 1431.65214
[28] Gardini, F.; Vacca, G., Virtual element method for second order elliptic eigenvalue problems, IMA J. Numer. Anal., 38, 4, 2026-2054 (2017) · Zbl 1477.65182
[29] Ishihara, K., A mixed finite element method for the biharmonic eigenvalue problems of plate bending, Publ. Res. Inst. Math. Sci., 14, 2, 399-414 (1978) · Zbl 0389.73075
[30] Liu, X.; Chen, Z., A virtual element method for the Cahn-Hilliard problem in mixed form, Appl. Math. Lett., 87, 115-124 (2019) · Zbl 1410.65375
[31] Liu, X.; He, Z.; Chen, Z., A fully discrete virtual element scheme for the Cahn-Hilliard equation in mixed form, Comput. Phys. Comm., 246 (2020) · Zbl 07678426
[32] Lü, T.; Liem, C.; Shih, T., A fourth order finite difference approximation to the eigenvalues of a clamped plate, J. Comput. Math., 6, 3, 267-271 (1988) · Zbl 0686.73055
[33] Monzón, G., A virtual element method for a biharmonic Steklov eigenvalue problem, Adv. Pure Appl. Math., 10, 4, 325-337 (2019) · Zbl 1430.31002
[34] Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the Steklov eigenvalue, Math. Models Methods Appl. Sci., 25, 8, 1421-1445 (2015) · Zbl 1330.65172
[35] Mora, D.; Rivera, G.; Rodríguez, R., A posteriori error estimates for a virtual element method for the Steklov eigenvalue, Comput. Math. Appl., 74, 9, 2172-2190 (2017) · Zbl 1397.65246
[36] Mora, D.; Rivera, G.; Velásquez, I., A virtual element method for the vibration problem of Kirchhoff plates, ESAIM Math. Model. Numer. Anal., 52, 4, 1437-1456 (2018) · Zbl 1407.65274
[37] Mora, D.; Velásquez, I., A virtual element method for the transmission eigenvalue problem, Math. Models Methods Appl. Sci., 28, 14, 2803-2831 (2018) · Zbl 1411.65149
[38] Mora, D.; Velásquez, I., Virtual element for the buckling problem of Kirchhoff-Love plates, Comput. Methods Appl. Mech. Engrg., 360 (2020) · Zbl 1441.74266
[39] Sun, J.; Zhou, A., Finite Element Methods for Eigenvalue Problems (2016), CRC Press: CRC Press, Boca Raton, FL
[40] Wang, L.; Xiong, C.; Wu, H.; Luo, F., A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems, Adv. Comput. Math., 45, 2623-2646 (2019) · Zbl 1432.65166
[41] Zhang, S.; Zhang, Z., Invalidity of decoupling a biharmonic equation to two poisson equations on non-convex polygons, Int. J. Numer. Anal. Model., 5, 1, 73-76 (2008) · Zbl 1136.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.