×

A virtual element method for a biharmonic Steklov eigenvalue problem. (English) Zbl 1430.31002

Summary: We propose a finite element approximation for a fourth-order Steklov eigenvalue problem by means of the virtual elements. In this setting we derive error estimates for the eigenvalues and eigenfunctions under standard assumptions on the domain.

MSC:

31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35J40 Boundary value problems for higher-order elliptic equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, New York, 1993. · Zbl 0874.47001
[2] O. Andersen, H. M. Nilsen and X. Raynaud, Virtual element method for geomechanical simulations of reservoir models, Comput. Geosci. 21 (2017), no. 5-6, 877-893. · Zbl 1401.74208
[3] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis. Vol. II, Handb. Numer. Anal. II, North-Holland, Amsterdam (1991), 641-787. · Zbl 0875.65087
[4] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013), no. 1, 199-214. · Zbl 1416.65433
[5] L. Beirão da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg. 295 (2015), 327-346. · Zbl 1423.74120
[6] M. F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations, Comput. Methods Appl. Mech. Engrg. 280 (2014), 135-156. · Zbl 1423.74863
[7] H. Bi, S. Ren and Y. Yang, Conforming finite element approximations for a fourth-order Steklov eigenvalue problem, Math. Probl. Eng. (2011), Article ID 873152. · Zbl 1235.65119
[8] D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk and M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Math. 1939, Springer, Berlin, 2008.
[9] F. Brezzi and L. D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013), 455-462. · Zbl 1297.74049
[10] D. Bucur, A. Ferrero and F. Gazzola, On the first eigenvalue of a fourth order Steklov problem, Calc. Var. Partial Differential Equations 35 (2009), no. 1, 103-131. · Zbl 1171.35089
[11] O. Čertík, F. Gardini, G. Manzini and G. Vacca, The virtual element method for eigenvalue problems with potential terms on polytopic meshes, Appl. Math. 63 (2018), no. 3, 333-365. · Zbl 1488.65196
[12] H. Chi, L. B. a. da Veiga and G. H. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Engrg. 318 (2017), 148-192. · Zbl 1439.74397
[13] L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Studies in Math. 19, American Mathematical Society, Providence, 2010. · Zbl 1194.35001
[14] A. Ferrero, F. Gazzola and T. Weth, On a fourth order Steklov eigenvalue problem, Analysis (Munich) 25 (2005), no. 4, 315-332. · Zbl 1112.49035
[15] F. Gardini and G. Vacca, Virtual element method for second-order elliptic eigenvalue problems, IMA J. Numer. Anal. 38 (2018), no. 4, 2026-2054. · Zbl 1477.65182
[16] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Math. 1991, Springer, Berlin, 2010. · Zbl 1239.35002
[17] F. Gazzola and G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions, Arch. Ration. Mech. Anal. 188 (2008), no. 3, 399-427. · Zbl 1155.35019
[18] D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem, Math. Models Methods Appl. Sci. 25 (2015), no. 8, 1421-1445. · Zbl 1330.65172
[19] D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates, ESAIM Math. Model. Numer. Anal. 52 (2018), no. 4, 1437-1456. · Zbl 1407.65274
[20] S. Raulot and A. Savo, Sharp bounds for the first eigenvalue of a fourth-order Steklov problem, J. Geom. Anal. 25 (2015), no. 3, 1602-1619. · Zbl 1325.58018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.