×

A stress/displacement virtual element method for plane elasticity problems. (English) Zbl 1439.74040

Summary: The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis.

MSC:

74B05 Classical linear elasticity
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[2] Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 196, 3682-3692 (2007) · Zbl 1173.76370
[3] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems, (Series MS&A, vol. 11 (2014), Springer) · Zbl 1286.65141
[4] Brezzi, F.; Buffa, A.; Lipnikov, K., Mimetic finite differences for elliptic problems, M2AN Math. Model. Numer. Anal., 43, 277-295 (2009) · Zbl 1177.65164
[5] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) · Zbl 1108.65102
[6] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 5, 1737-1760 (2011) · Zbl 1242.65215
[7] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The mimetic finite difference method for elliptic problems, (MS&A. Modeling, Simulation and Applications, vol. 11 (2014), Springer), xvi+392. MR 3135418 · Zbl 1286.65141
[8] Bishop, J. E., A displacement-based finite element formulation for general polyhedra using harmonic shape functions, Internat. J. Numer. Methods Engrg., 97, 1, 1-31 (2014), MR 3146670 · Zbl 1352.74326
[9] Bonelle, J.; Ern, A., Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, ESAIM Math. Model. Numer. Anal., 48, 2, 553-581 (2014), MR 3177857 · Zbl 1297.65132
[10] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) · Zbl 1352.65420
[11] Mousavi, S. E.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47, 5, 535-554 (2011) · Zbl 1221.65078
[12] Natarajan, S.; Bordas, S.; Mahapatra, D. R., Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, Internat. J. Numer. Methods Engrg., 80, 1, 103-134 (2009) · Zbl 1176.74190
[13] Rjasanow, S.; Weißer, S., Higher order BEM-based FEM on polygonal meshes, SIAM J. Numer. Anal., 50, 5, 2357-2378 (2012) · Zbl 1264.65196
[14] Talischi, C.; Paulino, G. H., Addressing integration error for polygonal finite elements through polynomial projections: a patch test connection, Math. Models Methods Appl. Sci., 24, 8, 1701-1727 (2014) · Zbl 1291.65349
[15] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 12, 2045-2066 (2004) · Zbl 1073.65563
[16] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polygonal finite elements for topology optimization: A unifying paradigm, Internat. J. Numer. Methods Engrg., 82, 6, 671-698 (2010) · Zbl 1188.74072
[17] Vohralik, M.; Wohlmuth, B. I., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Math. Models Methods Appl. Sci., 23, 5, 803-838 (2013) · Zbl 1264.65198
[18] Wachspress, E., Rational bases for convex polyhedra, Comput. Math. Appl., 59, 6, 1953-1956 (2010) · Zbl 1189.52014
[19] Di Pietro, D.; Alexandre Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283, 0, 1-21 (2015) · Zbl 1423.74876
[20] Rand, A.; Gillette, A.; Bajaj, C., Interpolation error estimates for mean value coordinates over convex polygons, Adv. Comput. Math., 39, 2, 327-347 (2013) · Zbl 1275.41005
[21] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121
[22] Cangiani, A.; Georgoulis, E. H.; Houston, P., hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24, 10, 2009-2041 (2014) · Zbl 1298.65167
[23] Gain, A. L.; Talischi, C.; Paulino, G. H., On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 282, 132-160 (2014), MR 3269894 · Zbl 1423.74095
[24] da Veiga, L. Beirão; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg., 295, 327-346 (2015) · Zbl 1423.74120
[25] Artioli, E.; Beirão da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem, Comput. Mech. (2017) · Zbl 1386.74132
[26] Artioli, E.; Beirão Da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problems, Comput. Mech. (2017) · Zbl 1386.74133
[27] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 1039-1050 (2016) · Zbl 1398.74420
[28] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., Some basic formulations of the virtual element method (vem) for finite deformations, Comput. Methods Appl. Mech. Engrg., 318, 148-192 (2017) · Zbl 1439.74397
[29] O. Andersen, H.M. Nilsen, X. Raynaud, On the use of the virtual element method for geomechanics on reservoir grids, online: https://arxiv.org/abs/1606.09508; O. Andersen, H.M. Nilsen, X. Raynaud, On the use of the virtual element method for geomechanics on reservoir grids, online: https://arxiv.org/abs/1606.09508
[30] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D., Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 794-812 (2013) · Zbl 1268.74010
[31] Brezzi, F.; Marini, L. D., Virtual element method for plate bending problems, Comput. Methods Appl. Mech. Engrg., 253, 455-462 (2012) · Zbl 1297.74049
[32] Boffi, D.; Brezzi, F.; Fortin, M., Mixed finite element methods and applications, (Springer Series in Computational Mathematics, vol. 44 (2013), Springer: Springer Heidelberg), xiv+685, MR 3097958 · Zbl 1277.65092
[33] Braess, D., Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory (2007), Cambridge University Press · Zbl 1180.65146
[34] Beirão Da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: M2AN, 51, 509-535 (2017) · Zbl 1398.76094
[35] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications, Vol. 1, (Travaux et Recherches Mathématiques, No. 17 (1968), Dunod, Paris) · Zbl 0165.10801
[36] Prager, W.; Synge, J. L., Approximations in elasticity based on the concept of function space, Quart. Appl. Math., 5, 241-269 (1947) · Zbl 0029.23505
[37] Mousavi, S. E.; Xiao, H.; Sukumar, N., Generalized Gaussian quadrature rules on arbitrary polygons, Internat. J. Numer. Methods Engrg., 82, 1, 99-113 (2010) · Zbl 1183.65026
[38] Sommariva, A.; Vianello, M., Product Gauss cubature over polygons based on Green’s integration formula, BIT Numer. Math., 47, 2, 441-453 (2007) · Zbl 1122.65027
[39] Zienckiewicz, O. C.; Taylor, R. L., The Finite Element Method (2000), Butterworth Heinemann · Zbl 0991.74004
[40] Dassault Systèmes, ABAQUS Documentation, Providence, RI, 2011.; Dassault Systèmes, ABAQUS Documentation, Providence, RI, 2011.
[41] Oleinik, O.; Kondratiev, V., On Korn’s inequalities, C. R. Math. Acad. Sci. Paris, 308, 483-487 (1989) · Zbl 0698.35067
[42] Brezzi, F.; Falk, R. S.; Marini, L. D., Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48, 4, 1227-1240 (2014) · Zbl 1299.76130
[43] Hughes, T. J.R., The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (2000), Dover · Zbl 1191.74002
[44] Herzog, R.; Meyer, C.; Wachsmuth, G., Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, J. Math. Anal. Appl., 382, 802-813 (2011) · Zbl 1419.74125
[45] L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element methods, preprint, submitted for publication, arXiv:1607.05988; L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element methods, preprint, submitted for publication, arXiv:1607.05988
[46] Lovadina, C.; Stenberg, R., Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp., 75, 256, 1659-1674 (2006), (electronic). MR 2240629 (2007h:65129) · Zbl 1119.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.