×

The quantum \(p\)-spin Glass model: a user manual for holographers. (English) Zbl 1539.81101

Summary: We study a large-\(N\) bosonic quantum mechanical sigma-model with a spherical target space subject to disordered interactions, more colloquially known as the \(p\)-spin spherical model. Replica symmetry is broken at low temperatures and for sufficiently weak quantum fluctuations, which drives the system into a spin glass (SG) phase. The first half of this paper is dedicated to a discussion of this model’s thermodynamics, with particular emphasis on the marginally stable SG. This phase exhibits an emergent conformal symmetry in the strong coupling regime, which dictates its thermodynamic properties. It is associated with an extensive number of nearby states in the free energy landscape. We discuss in detail an elegant approximate solution to the SG equations, which interpolates between the conformal regime and an ultraviolet-complete short distance solution. In the second half of this paper we explore the real-time dynamics of the model and uncover quantum chaos as measured by out-of-time-order four-point functions, both numerically and analytically. We find exponential Lyapunov growth, which intricately depends on the model’s couplings and becomes strongest in the quantum critical regime. We emphasize that the SG phase also exhibits quantum chaos, albeit with parametrically smaller Lyapunov exponent than in the replica symmetric phase. An analytical calculation in the marginal SG phase suggests that this Lyapunov exponent vanishes in a particular infinite coupling limit. We comment on the potential meaning of these observations from the perspective of holography.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

References:

[1] Kitaev, A., A simple model of quantum holography (2015)
[2] Maldacena, J.; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, J. High Energy Phys. (1999) · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[3] Majumdar, S. D., A class of exact solutions of Einstein’s field equations, Phys. Rev., 72, 390-398 (1947) · doi:10.1103/physrev.72.390
[4] Papapetrou, A., A static solution of the equations of the gravitational field for an arbitrary charge-distribution, Proc. R. Ir. Acad. A, 51, 191-204 (1947) · Zbl 0029.18401
[5] Strominger, A., AdS(2) quantum gravity and string theory, J. High Energy Phys. (1999) · Zbl 0965.81097 · doi:10.1088/1126-6708/1999/01/007
[6] Azeyanagi, T.; Nishioka, T.; Takayanagi, T., Near extremal black hole entropy as entanglement entropy via AdS(2)/CFT(1), Phys. Rev. D, 77 (2008) · doi:10.1103/physrevd.77.064005
[7] Castro, A.; Grumiller, D.; Larsen, F.; McNees, R., Holographic description of AdS(2) black holes, J. High Energy Phys. (2008) · doi:10.1088/1126-6708/2008/11/052
[8] Sen, A., State operator correspondence and entanglement in AdS_2/CFT_1, Entropy, 13, 1305-1323 (2011) · Zbl 1296.83046 · doi:10.3390/e13071305
[9] Anninos, D.; Anous, T.; de Lange, P.; Konstantinidis, G., Conformal quivers and melting molecules, J. High Energy Phys. (2015) · Zbl 1388.81134 · doi:10.1007/jhep03(2015)066
[10] Polchinski, J.; Rosenhaus, V., The spectrum in the Sachdev-Ye-Kitaev model, J. High Energy Phys. (2016) · Zbl 1388.81067 · doi:10.1007/jhep04(2016)001
[11] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94 (2016) · doi:10.1103/physrevd.94.106002
[12] Gross, D. J.; Rosenhaus, V., A generalization of Sachdev-Ye-Kitaev, J. High Energy Phys. (2017) · Zbl 1377.81172 · doi:10.1007/jhep02(2017)093
[13] Sachdev, S., Bekenstein-Hawking entropy and strange metals, Phys. Rev. X, 5 (2015) · doi:10.1103/physrevx.5.041025
[14] Jensen, K., Chaos in AdS_2 holography, Phys. Rev. Lett., 117 (2016) · doi:10.1103/physrevlett.117.111601
[15] Anninos, D.; Anous, T.; Denef, F., Disordered quivers and cold horizons, J. High Energy Phys. (2016) · doi:10.1007/jhep12(2016)071
[16] Jevicki, A.; Suzuki, K.; Yoon, J., Bi-local holography in the SYK model, J. High Energy Phys. (2016) · Zbl 1390.83116 · doi:10.1007/jhep07(2016)007
[17] Anninos, D.; Anous, T.; D’Agnolo, R. T., Marginal deformations and rotating horizons, J. High Energy Phys. (2017) · Zbl 1383.81175 · doi:10.1007/jhep12(2017)095
[18] Castro, A.; Mühlmann, B., Gravitational anomalies in nAdS_2/nCFT_1, Class. Quantum Grav., 37 (2020) · Zbl 1478.83134 · doi:10.1088/1361-6382/ab8bbb
[19] Castro, A.; Larsen, F.; Papadimitriou, I., 5D rotating black holes and the nAdS_2/nCFT_1 correspondence, J. High Energy Phys. (2018) · Zbl 1402.83073 · doi:10.1007/jhep10(2018)042
[20] Kitaev, A.; Suh, S. J., The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, J. High Energy Phys. (2018) · Zbl 1391.83080 · doi:10.1007/jhep05(2018)183
[21] Kitaev, A.; Suh, S. J., Statistical mechanics of a two-dimensional black hole, J. High Energy Phys. (2019) · Zbl 1416.83075 · doi:10.1007/jhep05(2019)198
[22] Maldacena, J.; Stanford, D.; Yang, Z., Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space, Prog. Theor. Exp. Phys., 2016 (2016) · Zbl 1361.81112 · doi:10.1093/ptep/ptw124
[23] Cotler, J. S.; Gur-Ari, G.; Hanada, M.; Polchinski, J.; Saad, P.; Shenker, S. H.; Stanford, D.; Streicher, A.; Tezuka, M.; Cotler, J. S.; Gur-Ari, G.; Hanada, M.; Polchinski, J.; Saad, P.; Shenker, S. H.; Stanford, D.; Streicher, A.; Tezuka, M., Black holes and random matrices, J. High Energy Phys.. J. High Energy Phys. (2018) · Zbl 1398.81208 · doi:10.1007/jhep09(2018)002
[24] Saad, P.; Shenker, S. H.; Stanford, D., A semiclassical ramp in SYK and in gravity (2018)
[25] Saad, P.; Shenker, S. H.; Stanford, D., JT gravity as a matrix integral (2019)
[26] Altland, A.; Sonner, J., Late time physics of holographic quantum chaos (2020)
[27] Denef, F., Supergravity flows and D-brane stability, J. High Energy Phys. (2000) · Zbl 0990.83553 · doi:10.1088/1126-6708/2000/08/050
[28] Cardoso, G. L.; de Wit, B.; Käppeli, J.; Mohaupt, T., Stationary BPS solutions in N = 2 supergravity with R2-interactions, J. High Energy Phys. (2000) · Zbl 0990.83567 · doi:10.1088/1126-6708/2000/12/019
[29] Bates, B.; Denef, F., Exact solutions for supersymmetric stationary black hole composites, J. High Energy Phys. (2011) · Zbl 1306.83040 · doi:10.1007/jhep11(2011)127
[30] Douglas, M. R.; Moore, G. W., D-branes, quivers, and ALE instantons (1996)
[31] Denef, F., Quantum quivers and Hall/hole halos, J. High Energy Phys. (2002) · doi:10.1088/1126-6708/2002/10/023
[32] Denef, F.; Moore, G. W., Split states, entropy enigmas, holes and halos, J. High Energy Phys. (2011) · Zbl 1306.81213 · doi:10.1007/jhep11(2011)129
[33] Gates, S. J.; Hu, Y.; Mak, S. N H., On 1D, N = 4 supersymmetric SYK-type models (I) (2021)
[34] Lozano, Y.; Nunez, C.; Ramirez, A.; Speziali, S., New AdS_2 backgrounds and \(#### = 4\) conformal quantum mechanics, J. High Energy Phys. (2021) · Zbl 1461.81130 · doi:10.1007/jhep03(2021)277
[35] Lozano, Y.; Nunez, C.; Ramirez, A.; Speziali, S., AdS_2 duals to ADHM quivers with Wilson lines, J. High Energy Phys. (2021) · Zbl 1461.83096 · doi:10.1007/jhep03(2021)145
[36] Crisanti, A.; Sommers, H-J, The spherical p-spin interaction spin glass model: the statics, Z. Phys. B, 87, 341-354 (1992) · doi:10.1007/bf01309287
[37] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[38] Cugliandolo, L. F.; Grempel, D.; da Silva Santos, C. A., Imaginary-time replica formalism study of a quantum spherical p-spin-glass model, Phys. Rev. B, 64 (2001) · doi:10.1103/physrevb.64.014403
[39] Edwards, S. F.; Anderson, P. W., Theory of spin glasses, J. Phys. F: Met. Phys., 5, 965 (1975) · doi:10.1088/0305-4608/5/5/017
[40] Anninos, D.; Anous, T.; Barandes, J.; Denef, F.; Gaasbeek, B., Hot halos and galactic glasses, J. High Energy Phys. (2012) · Zbl 1306.81183 · doi:10.1007/jhep01(2012)003
[41] Anninos, D.; Anous, T.; Denef, F.; Konstantinidis, G.; Shaghoulian, E., Supergoop dynamics, J. High Energy Phys. (2013) · doi:10.1007/jhep03(2013)081
[42] Anninos, D.; Anous, T.; Denef, F.; Peeters, L., Holographic vitrification, J. High Energy Phys. (2015) · Zbl 1388.83368 · doi:10.1007/jhep04(2015)027
[43] Kent-Dobias, J.; Kurchan, J., Complex complex landscapes, Phys. Rev. Res., 3 (2021) · doi:10.1103/physrevresearch.3.023064
[44] Kurchan, J., Quantum bound to chaos and the semiclassical limit (2016)
[45] Facoetti, D.; Biroli, G.; Kurchan, J.; Reichman, D. R., Classical glasses, black holes, and Strange quantum liquids, Phys. Rev. B, 100 (2019) · doi:10.1103/physrevb.100.205108
[46] Kurchan, J., Time-reparametrization invariances, multithermalization and the Parisi scheme (2021)
[47] Gur-Ari, G.; Mahajan, R.; Vaezi, A., Does the SYK model have a spin glass phase?, J. High Energy Phys. (2018) · Zbl 1404.81169 · doi:10.1007/jhep11(2018)070
[48] Aref’eva, I.; Khramtsov, M.; Tikhanovskaya, M.; Volovich, I., Replica-nondiagonal solutions in the SYK model, J. High Energy Phys. (2019) · Zbl 1418.83035 · doi:10.1007/jhep07(2019)113
[49] Baldwin, C. L.; Swingle, B., Quenched vs annealed: glassiness from SK to SYK, Phys. Rev. X, 10 (2020) · doi:10.1103/physrevx.10.031026
[50] Engelhardt, N.; Fischetti, S.; Maloney, A., Free energy from replica wormholes, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.046021
[51] Johnson, C. V., Low energy thermodynamics of JT gravity and supergravity (2020)
[52] Fu, W.; Sachdev, S., Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B, 94 (2016) · doi:10.1103/physrevb.94.035135
[53] Witten, E., An SYK-like model without disorder, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81564 · doi:10.1088/1751-8121/ab3752
[54] Klebanov, I. R.; Tarnopolsky, G., Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models, Phys. Rev. D, 95 (2017) · doi:10.1103/physrevd.95.046004
[55] Azeyanagi, T.; Ferrari, F.; Schaposnik Massolo, F. I., Phase diagram of planar matrix quantum mechanics, tensor, and Sachdev-Ye-Kitaev models, Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.061602
[56] Giombi, S.; Klebanov, I. R.; Tarnopolsky, G., Bosonic tensor models at large N and small ε, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.106014
[57] Chang, C-M; Colin-Ellerin, S.; Rangamani, M., On melonic supertensor models, J. High Energy Phys. (2018) · Zbl 1402.81240 · doi:10.1007/jhep10(2018)157
[58] Giombi, S.; Klebanov, I. R.; Popov, F.; Prakash, S.; Tarnopolsky, G., Prismatic large N models for bosonic tensors, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.105005
[59] Klebanov, I. R.; Popov, F.; Tarnopolsky, G., TASI lectures on large N tensor models, p 4 (2018)
[60] Ferrari, F.; Schaposnik Massolo, F. I., Phases of melonic quantum mechanics, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.026007
[61] Tikhanovskaya, M.; Guo, H.; Sachdev, S.; Tarnopolsky, G., Excitation spectra of quantum matter without quasiparticles: I. Sachdev-Ye-Kitaev models (2020)
[62] Tikhanovskaya, M.; Guo, H.; Sachdev, S.; Tarnopolsky, G., Excitation spectra of quantum matter without quasiparticles: II. random t-J models, Phys. Rev. B, 103 (2021) · doi:10.1103/physrevb.103.075142
[63] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin glass theory and beyond: an Introduction to the Replica Method and Its Applications, vol 9 (1987), Singapore: World Scientific, Singapore · Zbl 0992.82500
[64] Denef, F., TASI lectures on complex structures, Theoretical Advanced Study Institute in Elementary Particle Physics: String theory and its Applications: From meV to the Planck Scale, 407-512 (2011), (Singapore: World Scientific), (Singapore · doi:10.1142/9789814350525_0007
[65] De Dominicis, C.; Giardina, I., Random Fields and Spin Glasses: a Field Theory Approach (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1138.82030
[66] Bera, S.; Lokesh, K. Y V.; Banerjee, S., Quantum to classical crossover in many-body chaos in a glass (2021)
[67] Cugliandolo, L. F.; Grempel, D. R.; da Silva Santos, C. A., From second to first order transitions in a disordered quantum magnet, Phys. Rev. Lett., 85, 2589-2592 (2000) · doi:10.1103/physrevlett.85.2589
[68] Biroli, G.; Cugliandolo, L. F., Quantum Thouless-Anderson-Palmer equations for glassy systems, Phys. Rev. B, 64 (2001) · doi:10.1103/physrevb.64.014206
[69] Bray, A. J.; Moore, M. A., Replica theory of quantum spin glasses, J. Phys. C: Solid State Phys., 13, L655 (1980) · doi:10.1088/0022-3719/13/24/005
[70] Parisi, G., Infinite number of order parameters for spin-glasses, Phys. Rev. Lett., 43, 1754 (1979) · doi:10.1103/physrevlett.43.1754
[71] Parisi, G., The order parameter for spin glasses: a function on the interval 0-1, J. Phys. A: Math. Gen., 13, 1101 (1980) · doi:10.1088/0305-4470/13/3/042
[72] Crisanti, A.; Paladin, G.; Vulpiani, H-J S. A., Replica trick and fluctuations in disordered systems, J. Physique I, 2, 1325-1332 (1992) · doi:10.1051/jp1:1992213
[73] Sherrington, D.; Kirkpatrick, S., Solvable model of a spin-glass, Phys. Rev. Lett., 35, 1792-1796 (1975) · doi:10.1103/physrevlett.35.1792
[74] Kirkpatrick, T. R.; Thirumalai, D., p-spin-interaction spin-glass models: connections with the structural glass problem, Phys. Rev. B, 36, 5388 (1987) · doi:10.1103/physrevb.36.5388
[75] Horner, H., Dynamics of learning for the binary perceptron problem, Z. Phys. B, 86, 291-308 (1992) · doi:10.1007/bf01313839
[76] Horner, H., Dynamics of learning and generalization in a binary perceptron model, Z. Phys. B, 87, 371-376 (1992) · doi:10.1007/bf01309290
[77] Crisanti, A.; Horner, H.; Sommers, H-J, The spherical p-spin interaction spin-glass model, Z. Phys. B, 92, 257-271 (1993) · doi:10.1007/bf01312184
[78] Cugliandolo, L. F.; Kurchan, J., Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model, Phys. Rev. Lett., 71, 173-176 (1993) · doi:10.1103/physrevlett.71.173
[79] Georges, A.; Parcollet, O.; Sachdev, S., Mean field theory of a quantum Heisenberg spin glass, Phys. Rev. Lett., 85, 840-843 (2000) · doi:10.1103/physrevlett.85.840
[80] Monasson, R., Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett., 75, 2847 (1995) · doi:10.1103/physrevlett.75.2847
[81] Mézard, M., How to compute the thermodynamics of a glass using a cloned liquid, Physica A, 265, 352-369 (1999) · doi:10.1016/s0378-4371(98)00659-1
[82] Zamponi, F., Mean field theory of spin glasses (2010)
[83] Contucci, P.; Corberi, F.; Kurchan, J.; Mingione, E., Stationarization and multithermalization in spin glasses (2020)
[84] Read, N.; Sachdev, S.; Ye, J., Landau theory of quantum spin glasses of rotors and Ising spins, Phys. Rev. B, 52, 384-410 (1995) · doi:10.1103/physrevb.52.384
[85] Cheng, G.; Swingle, B., Chaos in a quantum rotor model (2019)
[86] Mao, D.; Chowdhury, D.; Senthil, T., Slow scrambling and hidden integrability in a random rotor model, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.094306
[87] Abramowitz, M.; Stegun, I. A.; Romer, R. H., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988), (Washington, DC: United States Government Printing Office), (Washington, DC
[88] Götze, W., Complex Dynamics of Glass-Forming Liquids: A Mode Coupling Theory, vol 143 (2008), Oxford: Oxford University Press, Oxford
[89] Nieuwenhuizen, T. M., To maximize or not to maximize the free energy of glassy systems, Phys. Rev. Lett., 74, 3463 (1995) · doi:10.1103/physrevlett.74.3463
[90] Thouless, D. J.; Anderson, P. W.; Palmer, R. G., Solution of ‘solvable model of a spin glass’, Phil. Mag., 35, 593-601 (1977) · doi:10.1080/14786437708235992
[91] Anninos, D.; Hofman, D. M., Infrared realization of dS_2 in AdS_2, Class. Quantum Grav., 35 (2018) · Zbl 1409.83135 · doi:10.1088/1361-6382/aab143
[92] Jiang, J.; Yang, Z., Thermodynamics and many body chaos for generalized large q SYK models, J. High Energy Phys. (2019) · Zbl 1421.81092 · doi:10.1007/jhep08(2019)019
[93] Witten, E., Deformations of JT gravity and phase transitions (2020)
[94] Witten, E., Matrix models and deformations of JT gravity, Proc. R. Soc. A, 476, 20200582 (2020) · Zbl 1472.83071 · doi:10.1098/rspa.2020.0582
[95] Maxfield, H.; Turiaci, G. J., The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral, J. High Energy Phys. (2021) · Zbl 1459.83036 · doi:10.1007/jhep01(2021)118
[96] Anninos, D.; Galante, D. A., Constructing AdS_2 flow geometries, J. High Energy Phys. (2021) · Zbl 1460.83072 · doi:10.1007/jhep02(2021)045
[97] Cugliandolo, L. F.; Lozano, G., Quantum aging in mean-field models, Phys. Rev. Lett., 80, 4979-4982 (1998) · doi:10.1103/physrevlett.80.4979
[98] Cugliandolo, L. F.; Lozano, G., Real-time nonequilibrium dynamics of quantum glassy systems, Phys. Rev. B, 59, 915-942 (1999) · doi:10.1103/physrevb.59.915
[99] Tulipman, E.; Berg, E., Strongly coupled quantum phonon fluid in a solvable model, Phys. Rev. Res., 2 (2020) · doi:10.1103/physrevresearch.2.033431
[100] Cugliandolo, L. F.; Lozano, G. S.; Nessi, E. N., Non equilibrium dynamics of isolated disordered systems: the classical Hamiltonian p-spin model, J. Stat. Mech. (2017) · Zbl 1457.82359 · doi:10.1088/1742-5468/aa7dfb
[101] Götze, W.; Sjogren, L., Relaxation processes in supercooled liquids, Rep. Prog. Phys., 55, 241 (1992) · doi:10.1088/0034-4885/55/3/001
[102] Sárosi, G., AdS_2 holography and the SYK model (2018)
[103] Dasgupta, C.; Indrani, A. V.; Ramaswamy, S.; Phani, M. K., Is there a growing correlation length near the glass transition?, Europhys. Lett., 15, 307 (1991) · doi:10.1209/0295-5075/15/3/013
[104] Lačević, N.; Starr, F. W.; Schrøder, T.; Glotzer, S., Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function, J. Chem. Phys., 119, 7372-7387 (2003) · doi:10.1063/1.1605094
[105] Cugliandolo, L. F.; Kurchan, J.; Peliti, L., Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics, Phys. Rev. E, 55, 3898-3914 (1997) · doi:10.1103/physreve.55.3898
[106] Maldacena, J.; Shenker, S. H.; Stanford, D., A bound on chaos, J. High Energy Phys. (2016) · Zbl 1390.81388 · doi:10.1007/jhep08(2016)106
[107] Gu, Y.; Kitaev, A.; Sachdev, S.; Tarnopolsky, G., Notes on the complex Sachdev-Ye-Kitaev model, J. High Energy Phys. (2020) · Zbl 1435.83154 · doi:10.1007/jhep02(2020)157
[108] Anninos, D.; Hofman, D. M.; Kruthoff, J., Charged quantum fields in AdS_2, SciPost Phys., 7, 054 (2019) · doi:10.21468/scipostphys.7.4.054
[109] Derrida, B., Random-energy model: limit of a family of disordered models, Phys. Rev. Lett., 45, 79-82 (1980) · doi:10.1103/physrevlett.45.79
[110] Gross, D. J.; Rosenhaus, V., The bulk dual of SYK: cubic couplings, J. High Energy Phys. (2017) · Zbl 1380.81322 · doi:10.1007/jhep05(2017)092
[111] Berkooz, M.; Isachenkov, M.; Narovlansky, V.; Torrents, G., Towards a full solution of the large N double-scaled SYK model, J. High Energy Phys. (2019) · Zbl 1414.81134 · doi:10.1007/jhep03(2019)079
[112] Polyakov, A. M., De Sitter space and eternity, Nucl. Phys. B, 797, 199-217 (2008) · Zbl 1234.83010 · doi:10.1016/j.nuclphysb.2008.01.002
[113] Anninos, D.; Denef, F., Cosmic clustering, J. High Energy Phys. (2016) · doi:10.1007/jhep06(2016)181
[114] Anninos, D.; Denef, F.; Law, Y. T A.; Sun, Z., Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions (2020)
[115] Law, Y. T A., A compendium of sphere path integrals (2020)
[116] Azeyanagi, T.; Ferrari, F.; Gregori, P.; Leduc, L.; Valette, G., More on the new large D limit of matrix models, Ann. Phys., NY, 393, 308-326 (2018) · Zbl 1390.81287 · doi:10.1016/j.aop.2018.04.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.