×

Non-linear non-renormalization theorems. (English) Zbl 07748955

Summary: We study the mixing of operators under renormalization group flow in quantum theories, and prove a non-renormalization theorem at non-linear order. It dictates zeros up to a certain number of loops in anomalous dimension tensors that control, for example, the mixing of operators at order dimension six squared into dimension eight. We obtain new results at up to three loops for the mass dimension eight anomalous dimension tensor of \(\phi^4\) theory in \(D = 4 - 2\varepsilon\) dimensions and verify the zeros predicted by the theorem.

MSC:

81-XX Quantum theory

Software:

Maple; FORM; Forcer

References:

[1] Parke, SJ; Taylor, TR, An Amplitude for n Gluon Scattering, Phys. Rev. Lett., 56, 2459 (1986) · doi:10.1103/PhysRevLett.56.2459
[2] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[3] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
[4] Arkani-Hamed, N.; Trnka, J., The Amplituhedron, JHEP, 10, 030 (2014) · Zbl 1468.81075 · doi:10.1007/JHEP10(2014)030
[5] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].
[6] C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett.114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
[7] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett.116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
[8] Cheung, C.; Kampf, K.; Novotny, J.; Shen, C-H; Trnka, J., A Periodic Table of Effective Field Theories, JHEP, 02, 020 (2017) · Zbl 1377.81123 · doi:10.1007/JHEP02(2017)020
[9] B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices, and their partition functions, JHEP10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
[10] Shadmi, Y.; Weiss, Y., Effective Field Theory Amplitudes the On-Shell Way: Scalar and Vector Couplings to Gluons, JHEP, 02, 165 (2019) · doi:10.1007/JHEP02(2019)165
[11] B. Henning and T. Melia, Constructing effective field theories via their harmonics, Phys. Rev. D100 (2019) 016015 [arXiv:1902.06754] [INSPIRE].
[12] B. Henning and T. Melia, Conformal-helicity duality & the Hilbert space of free CFTs, arXiv:1902.06747 [INSPIRE].
[13] T. Ma, J. Shu and M.-L. Xiao, Standard model effective field theory from on-shell amplitudes, Chin. Phys. C47 (2023) 023105 [arXiv:1902.06752] [INSPIRE].
[14] Durieux, G.; Kitahara, T.; Shadmi, Y.; Weiss, Y., The electroweak effective field theory from on-shell amplitudes, JHEP, 01, 119 (2020) · doi:10.1007/JHEP01(2020)119
[15] Aoude, R.; Machado, CS, The Rise of SMEFT On-shell Amplitudes, JHEP, 12, 058 (2019) · doi:10.1007/JHEP12(2019)058
[16] G. Durieux and C.S. Machado, Enumerating higher-dimensional operators with on-shell amplitudes, Phys. Rev. D101 (2020) 095021 [arXiv:1912.08827] [INSPIRE].
[17] Broedel, J.; Dixon, LJ, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP, 10, 091 (2012) · doi:10.1007/JHEP10(2012)091
[18] Elvang, H.; Hadjiantonis, M.; Jones, CRT; Paranjape, S., Soft Bootstrap and Supersymmetry, JHEP, 01, 195 (2019) · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[19] M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits, and the double copy beyond leading order, Phys. Rev. D102 (2020) 105011 [arXiv:1908.07531] [INSPIRE].
[20] J.J.M. Carrasco, L. Rodina, Z. Yin and S. Zekioglu, Simple encoding of higher derivative gauge and gravity counterterms, Phys. Rev. Lett.125 (2020) 251602 [arXiv:1910.12850] [INSPIRE].
[21] Carrasco, JJM; Rodina, L.; Zekioglu, S., Composing effective prediction at five points, JHEP, 06, 169 (2021) · doi:10.1007/JHEP06(2021)169
[22] Chi, H-H; Elvang, H.; Herderschee, A.; Jones, CRT; Paranjape, S., Generalizations of the double-copy: the KLT bootstrap, JHEP, 03, 077 (2022) · Zbl 1522.81202 · doi:10.1007/JHEP03(2022)077
[23] Bonnefoy, Q.; Durieux, G.; Grojean, C.; Machado, CS; Roosmale Nepveu, J., The seeds of EFT double copy, JHEP, 05, 042 (2022) · Zbl 1522.81197 · doi:10.1007/JHEP05(2022)042
[24] J.J.M. Carrasco and N.H. Pavao, Virtues of a symmetric-structure double copy, Phys. Rev. D107 (2023) 065005 [arXiv:2211.04431] [INSPIRE].
[25] J.J.M. Carrasco, M. Lewandowski and N.H. Pavao, Color-Dual Fates of F^3, R^3, and \(\mathcal{N} = 4\) Supergravity, Phys. Rev. Lett.131 (2023) 051601 [arXiv:2203.03592] [INSPIRE].
[26] A.S.-K. Chen, H. Elvang and A. Herderschee, Bootstrapping the String Kawai-Lewellen-Tye Kernel, Phys. Rev. Lett.131 (2023) 031602 [arXiv:2302.04895] [INSPIRE].
[27] Arkani-Hamed, N.; Pate, M.; Raclariu, A-M; Strominger, A., Celestial amplitudes from UV to IR, JHEP, 08, 062 (2021) · doi:10.1007/JHEP08(2021)062
[28] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[29] Alonso, R.; Jenkins, EE; Manohar, AV, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, Phys. Lett. B, 739, 95 (2014) · Zbl 1306.81384 · doi:10.1016/j.physletb.2014.10.045
[30] Elias-Miro, J.; Espinosa, JR; Pomarol, A., One-loop non-renormalization results in EFTs, Phys. Lett. B, 747, 272 (2015) · Zbl 1369.81065 · doi:10.1016/j.physletb.2015.05.056
[31] C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett.115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].
[32] Z. Bern, J. Parra-Martinez and E. Sawyer, Nonrenormalization and Operator Mixing via On-Shell Methods, Phys. Rev. Lett.124 (2020) 051601 [arXiv:1910.05831] [INSPIRE].
[33] M. Jiang, J. Shu, M.-L. Xiao and Y.-H. Zheng, Partial Wave Amplitude Basis and Selection Rules in Effective Field Theories, Phys. Rev. Lett.126 (2021) 011601 [arXiv:2001.04481] [INSPIRE].
[34] Baratella, P.; Haslehner, D.; Ruhdorfer, M.; Serra, J.; Weiler, A., RG of GR from on-shell amplitudes, JHEP, 03, 156 (2022) · Zbl 1522.81193 · doi:10.1007/JHEP03(2022)156
[35] Craig, N.; Jiang, M.; Li, Y-Y; Sutherland, D., Loops and Trees in Generic EFTs, JHEP, 08, 086 (2020) · Zbl 1454.81141 · doi:10.1007/JHEP08(2020)086
[36] Cao, W.; Herzog, F.; Melia, T.; Nepveu, JR, Renormalization and non-renormalization of scalar EFTs at higher orders, JHEP, 09, 014 (2021) · Zbl 1472.81154 · doi:10.1007/JHEP09(2021)014
[37] Jenkins, EE; Manohar, AV; Stoffer, P., Low-Energy Effective Field Theory below the Electroweak Scale: Anomalous Dimensions, JHEP, 01, 084 (2018) · Zbl 1384.81078 · doi:10.1007/JHEP01(2018)084
[38] S. Davidson, M. Gorbahn and M. Leak, Majorana neutrino masses in the renormalization group equations for lepton flavor violation, Phys. Rev. D98 (2018) 095014 [arXiv:1807.04283] [INSPIRE].
[39] M. Chala and A. Titov, Neutrino masses in the Standard Model effective field theory, Phys. Rev. D104 (2021) 035002 [arXiv:2104.08248] [INSPIRE].
[40] M. Chala, G. Guedes, M. Ramos and J. Santiago, Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions. Part I, SciPost Phys.11 (2021) 065 [arXiv:2106.05291] [INSPIRE].
[41] Chala, M.; Santiago, J., Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D, 105, L111901 (2022) · doi:10.1103/PhysRevD.105.L111901
[42] L.V. Silva, Effects of squared four-fermion operators of the Standard Model Effective Field Theory on meson mixing, arXiv:2201.03038 [INSPIRE].
[43] Helset, A.; Jenkins, EE; Manohar, AV, Renormalization of the Standard Model Effective Field Theory from geometry, JHEP, 02, 063 (2023) · Zbl 1541.81105 · doi:10.1007/JHEP02(2023)063
[44] K. Asteriadis, S. Dawson and D. Fontes, Double insertions of SMEFT operators in gluon fusion Higgs boson production, Phys. Rev. D107 (2023) 055038 [arXiv:2212.03258] [INSPIRE].
[45] S. Dawson, S. Homiller and M. Sullivan, Impact of dimension-eight SMEFT contributions: A case study, Phys. Rev. D104 (2021) 115013 [arXiv:2110.06929] [INSPIRE].
[46] A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
[47] T. Kim and A. Martin, Monolepton production in SMEFT to \(\mathcal{O} \)(1/Λ^4) and beyond, JHEP09 (2022) 124 [arXiv:2203.11976] [INSPIRE].
[48] A. Martin and M. Trott, ggh variations, Phys. Rev. D105 (2022) 076004 [arXiv:2109.05595] [INSPIRE].
[49] M. Trott, Methodology for theory uncertainties in the standard model effective field theory, Phys. Rev. D104 (2021) 095023 [arXiv:2106.13794] [INSPIRE].
[50] Chetyrkin, KG; Tkachov, FV, Infrared R-operation and ultraviolet counterterms in the MS-scheme, Phys. Lett. B, 114, 340 (1982) · doi:10.1016/0370-2693(82)90358-6
[51] Chetyrkin, KG; Smirnov, VA, R*-Operation corrected, Phys. Lett. B, 144, 419 (1984) · doi:10.1016/0370-2693(84)91291-7
[52] Smirnov, VA; Chetyrkin, KG, R*-Operation in the Minimal Subtraction Scheme, Theor. Math. Phys., 63, 462 (1985) · doi:10.1007/BF01017902
[53] K.G. Chetyrkin, Combinatorics of R-, R^−1-, and R^*-operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].
[54] Herzog, F.; Ruijl, B., The R^*-operation for Feynman graphs with generic numerators, JHEP, 05, 037 (2017) · Zbl 1380.81133 · doi:10.1007/JHEP05(2017)037
[55] J. de Vries, G. Falcioni, F. Herzog and B. Ruijl, Two- and three-loop anomalous dimensions of Weinberg’s dimension-six CP-odd gluonic operator, Phys. Rev. D102 (2020) 016010 [arXiv:1907.04923] [INSPIRE].
[56] Beekveldt, R.; Borinsky, M.; Herzog, F., The Hopf algebra structure of the R^*-operation, JHEP, 07, 061 (2020) · Zbl 1451.81331 · doi:10.1007/JHEP07(2020)061
[57] Henning, B.; Lu, X.; Melia, T.; Murayama, H., Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys., 347, 363 (2016) · Zbl 1350.81021 · doi:10.1007/s00220-015-2518-2
[58] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].
[59] Lehman, L.; Martin, A., Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, JHEP, 02, 081 (2016) · Zbl 1388.81341 · doi:10.1007/JHEP02(2016)081
[60] B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . . : Higher dimension operators in the SM EFT, JHEP08 (2017) 016 [Erratum ibid.09 (2019) 019] [arXiv:1512.03433] [INSPIRE].
[61] Kobach, A.; Pal, S., Hilbert Series and Operator Basis for NRQED and NRQCD/HQET, Phys. Lett. B, 772, 225 (2017) · Zbl 1379.81053 · doi:10.1016/j.physletb.2017.06.026
[62] Kobach, A.; Pal, S., Conformal Structure of the Heavy Particle EFT Operator Basis, Phys. Lett. B, 783, 311 (2018) · Zbl 1411.81130 · doi:10.1016/j.physletb.2018.06.060
[63] Kobach, A.; Pal, S., Reparameterization Invariant Operator Basis for NRQED and HQET, JHEP, 11, 012 (2019) · doi:10.1007/JHEP11(2019)012
[64] Ruhdorfer, M.; Serra, J.; Weiler, A., Effective Field Theory of Gravity to All Orders, JHEP, 05, 083 (2020) · Zbl 1437.83044 · doi:10.1007/JHEP05(2020)083
[65] L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, . . . : a Hilbert series for the QCD chiral Lagrangian, JHEP01 (2021) 142 [arXiv:2009.01239] [INSPIRE]. · Zbl 1541.81104
[66] Gráf, L.; Henning, B.; Lu, X.; Melia, T.; Murayama, H., Hilbert series, the Higgs mechanism, and HEFT, JHEP, 02, 064 (2023) · Zbl 1541.81104 · doi:10.1007/JHEP02(2023)064
[67] Henriksson, J., The critical O(N) CFT: Methods and conformal data, Phys. Rept., 1002, 1 (2023) · Zbl 1518.81089 · doi:10.1016/j.physrep.2022.12.002
[68] Henriksson, J.; Kousvos, SR; Reehorst, M., Spectrum continuity and level repulsion: the Ising CFT from infinitesimal to finite ε, JHEP, 02, 218 (2023) · doi:10.1007/JHEP02(2023)218
[69] M. Jiang, N. Craig, Y.-Y. Li and D. Sutherland, Complete one-loop matching for a singlet scalar in the Standard Model EFT, JHEP02 (2019) 031 [Erratum ibid.01 (2021) 135] [arXiv:1811.08878] [INSPIRE]. · Zbl 1411.81136
[70] G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B61 (1973) 455 [INSPIRE].
[71] M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett. B160 (1985) 81 [INSPIRE].
[72] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett.102 (2009) 162001 [Erratum ibid.111 (2013) 199905] [arXiv:0901.0722] [INSPIRE]. · Zbl 1434.81135
[73] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP06 (2009) 081 [Erratum ibid.11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. · Zbl 1342.81350
[74] Bern, Z.; Parra-Martinez, J.; Sawyer, E., Structure of two-loop SMEFT anomalous dimensions via on-shell methods, JHEP, 10, 211 (2020) · doi:10.1007/JHEP10(2020)211
[75] Peskin, ME; Schroeder, DV, An Introduction to quantum field theory (1995), Reading, U.S.A.: Addison-Wesley, Reading, U.S.A.
[76] B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, Comput. Phys. Commun.253 (2020) 107198 [arXiv:1704.06650] [INSPIRE]. · Zbl 1535.81008
[77] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[78] B. Ruijl, T. Ueda and J.A.M. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
[79] T. Ueda, T. Kaneko, B. Ruijl and J.A.M. Vermaseren, Further developments of FORM, J. Phys. Conf. Ser.1525 (2020) 012013 [INSPIRE].
[80] Maplesoft, Maple 2018, Maplesoft, Waterloo, ON, Canada (2018).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.