×

What’s inside a hairy black hole in massive gravity? (English) Zbl 1476.83127

Summary: In the context of massive gravity theories, we study holographic flows driven by a relevant scalar operator and interpolating between a UV 3-dimensional CFT and a trans-IR Kasner universe. For a large class of scalar potentials, the Cauchy horizon never forms in presence of a non-trivial scalar hair, although, in absence of it, the black hole solution has an inner horizon due to the finite graviton mass. We show that the instability of the Cauchy horizon triggered by the scalar field is associated to a rapid collapse of the Einstein-Rosen bridge. The corresponding flows run smoothly through the event horizon and at late times end in a spacelike singularity at which the asymptotic geometry takes a general Kasner form dominated by the scalar hair kinetic term. Interestingly, we discover deviations from the simple Kasner universe whenever the potential terms become larger than the kinetic one. Finally, we study the effects of the scalar deformation and the graviton mass on the Kasner singularity exponents and show the relationship between the Kasner exponents and the entanglement and butterfly velocities probing the black hole dynamics. Differently from the holographic superconductor case, we can prove explicitly that Josephson oscillations in the interior of the BH are absent.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)1916 (1916) 189 [physics/9905030] [INSPIRE]. · Zbl 1210.83011
[2] Reissner, H., Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie, Annalen Phys., 355, 106 (1916) · doi:10.1002/andp.19163550905
[3] Nordström, G., On the Energy of the Gravitation field in Einstein’s Theory, Kon. Ned. Akad. Wetensch. Proc. Series B Physical Sciences, 20, 1238 (1918)
[4] Kerr, RP, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237 (1963) · Zbl 0112.21904 · doi:10.1103/PhysRevLett.11.237
[5] Penrose, R., Gravitational Collapse: the Role of General Relativity, Riv. Nuovo Cim., 1, 252 (1969)
[6] Hartnoll, SA; Horowitz, GT; Kruthoff, J.; Santos, JE, Gravitational duals to the grand canonical ensemble abhor Cauchy horizons, JHEP, 10, 102 (2020) · Zbl 1456.83080 · doi:10.1007/JHEP10(2020)102
[7] Cai, R-G; Li, L.; Yang, R-Q, No Inner-Horizon Theorem for Black Holes with Charged Scalar Hairs, JHEP, 03, 263 (2021) · Zbl 1461.83027 · doi:10.1007/JHEP03(2021)263
[8] Hartnoll, SA; Horowitz, GT; Kruthoff, J.; Santos, JE, Diving into a holographic superconductor, SciPost Phys., 10, 009 (2021)
[9] D.O. Devecioglu and M.-I. Park, No Scalar-Haired Cauchy Horizon Theorem in Einstein-Maxwell-Horndeski Theories, arXiv:2101.10116 [INSPIRE].
[10] Y.-S. An, L. Li and F.-G. Yang, No Cauchy horizon theorem for nonlinear electrodynamics black holes with charged scalar hairs, Phys. Rev. D104 (2021) 024040 [arXiv:2106.01069] [INSPIRE].
[11] Grandi, N.; Salazar Landea, I., Diving inside a hairy black hole, JHEP, 05, 152 (2021) · Zbl 1466.83079 · doi:10.1007/JHEP05(2021)152
[12] R.-Q. Yang, R.-G. Cai and L. Li, Constraining the number of horizons with energy conditions, arXiv:2104.03012 [INSPIRE].
[13] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[14] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The Black hole singularity in AdS/CFT, JHEP, 02, 014 (2004) · doi:10.1088/1126-6708/2004/02/014
[15] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I, JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE].
[16] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[17] Stanford, D.; Susskind, L., Complexity and Shock Wave Geometries, Phys. Rev. D, 90, 126007 (2014) · doi:10.1103/PhysRevD.90.126007
[18] Brown, AR; Roberts, DA; Susskind, L.; Swingle, B.; Zhao, Y., Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett., 116, 191301 (2016) · doi:10.1103/PhysRevLett.116.191301
[19] Frenkel, A.; Hartnoll, SA; Kruthoff, J.; Shi, ZD, Holographic flows from CFT to the Kasner universe, JHEP, 08, 003 (2020) · Zbl 1454.83112 · doi:10.1007/JHEP08(2020)003
[20] Y.-Q. Wang, Y. Song, Q. Xiang, S.-W. Wei, T. Zhu and Y.-X. Liu, Holographic flows with scalar self-interaction toward the Kasner universe, arXiv:2009.06277 [INSPIRE].
[21] Hinterbichler, K., Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 (2012) · doi:10.1103/RevModPhys.84.671
[22] Rubakov, VA; Tinyakov, PG, Infrared-modified gravities and massive gravitons, Phys. Usp., 51, 759 (2008) · doi:10.1070/PU2008v051n08ABEH006600
[23] Dubovsky, SL, Phases of massive gravity, JHEP, 10, 076 (2004) · doi:10.1088/1126-6708/2004/10/076
[24] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
[25] Baggioli, M.; Pujolàs, O., Electron-Phonon Interactions, Metal-Insulator Transitions, and Holographic Massive Gravity, Phys. Rev. Lett., 114, 251602 (2015) · doi:10.1103/PhysRevLett.114.251602
[26] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolàs, O., Solid Holography and Massive Gravity, JHEP, 02, 114 (2016) · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[27] Alberte, L.; Baggioli, M.; Pujolàs, O., Viscosity bound violation in holographic solids and the viscoelastic response, JHEP, 07, 074 (2016) · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
[28] Alberte, L.; Ammon, M.; Baggioli, M.; Jiménez, A.; Pujolàs, O., Black hole elasticity and gapped transverse phonons in holography, JHEP, 01, 129 (2018) · Zbl 1384.83021 · doi:10.1007/JHEP01(2018)129
[29] Alberte, L.; Ammon, M.; Jiménez-Alba, A.; Baggioli, M.; Pujolàs, O., Holographic Phonons, Phys. Rev. Lett., 120, 171602 (2018) · Zbl 1384.83021 · doi:10.1103/PhysRevLett.120.171602
[30] Baggioli, M.; Grieninger, S.; Li, L., Magnetophonons & type-B Goldstones from Hydrodynamics to Holography, JHEP, 09, 037 (2020) · doi:10.1007/JHEP09(2020)037
[31] Baggioli, M.; Kim, K-Y; Li, L.; Li, W-J, Holographic Axion Model: a simple gravitational tool for quantum matter, Sci. China Phys. Mech. Astron., 64, 270001 (2021) · doi:10.1007/s11433-021-1681-8
[32] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, JHEP, 05, 101 (2014) · doi:10.1007/JHEP05(2014)101
[33] M. Baggioli, Gravity, holography and applications to condensed matter, Ph.D. thesis, Universitat Autonoma de Barcelona, Plaça Cívica, Spain (2016) arXiv:1610.02681 [INSPIRE].
[34] M. Baggioli, A. Cisterna and K. Pallikaris, Exploring the black hole spectrum of axionic Horndeski theory, arXiv:2106.07458 [INSPIRE].
[35] Ammon, M.; Baggioli, M.; Jiménez-Alba, A., A Unified Description of Translational Symmetry Breaking in Holography, JHEP, 09, 124 (2019) · Zbl 1423.83067 · doi:10.1007/JHEP09(2019)124
[36] R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
[37] Baggioli, M.; Goykhman, M., Phases of holographic superconductors with broken translational symmetry, JHEP, 07, 035 (2015) · Zbl 1388.83563 · doi:10.1007/JHEP07(2015)035
[38] Baggioli, M.; Goykhman, M., Under The Dome: Doped holographic superconductors with broken translational symmetry, JHEP, 01, 011 (2016) · doi:10.1007/JHEP01(2016)011
[39] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[40] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[41] P. Chaturvedi, V. Malvimat and G. Sengupta, Entanglement thermodynamics for charged black holes, Phys. Rev. D94 (2016) 066004 [arXiv:1601.00303] [INSPIRE].
[42] Li, H-L; Yang, S-Z; Zu, X-T, Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair, Phys. Lett. B, 764, 310 (2017) · doi:10.1016/j.physletb.2016.11.043
[43] Zeng, X-X; Li, L-F, Holographic Phase Transition Probed by Nonlocal Observables, Adv. High Energy Phys., 2016, 6153435 (2016) · Zbl 1366.83067 · doi:10.1155/2016/6153435
[44] Albash, T.; Johnson, CV, Holographic Studies of Entanglement Entropy in Superconductors, JHEP, 05, 079 (2012) · doi:10.1007/JHEP05(2012)079
[45] Cai, R-G; He, S.; Li, L.; Zhang, Y-L, Holographic Entanglement Entropy in Insulator/Superconductor Transition, JHEP, 07, 088 (2012) · doi:10.1007/JHEP07(2012)088
[46] Cai, R-G; He, S.; Li, L.; Zhang, Y-L, Holographic Entanglement Entropy on P-wave Superconductor Phase Transition, JHEP, 07, 027 (2012) · doi:10.1007/JHEP07(2012)027
[47] Dey, A.; Mahapatra, S.; Sarkar, T., Very General Holographic Superconductors and Entanglement Thermodynamics, JHEP, 12, 135 (2014) · doi:10.1007/JHEP12(2014)135
[48] Ling, Y.; Liu, P.; Niu, C.; Wu, J-P; Xian, Z-Y, Holographic Entanglement Entropy Close to Quantum Phase Transitions, JHEP, 04, 114 (2016) · Zbl 1398.81165
[49] Ling, Y.; Liu, P.; Wu, J-P; Zhou, Z., Holographic Metal-Insulator Transition in Higher Derivative Gravity, Phys. Lett. B, 766, 41 (2017) · Zbl 1397.81164 · doi:10.1016/j.physletb.2016.12.051
[50] K. Li et al., Measuring Holographic Entanglement Entropy on a Quantum Simulator, npj Quantum Inf.5 (2019) 30 [arXiv:1705.00365] [INSPIRE].
[51] M. Baggioli and D. Giataganas, Detecting Topological Quantum Phase Transitions via the c-Function, Phys. Rev. D103 (2021) 026009 [arXiv:2007.07273] [INSPIRE].
[52] Takayanagi, T., Entanglement entropy and gravity/condensed matter correspondence, Gen. Rel. Grav., 46, 1693 (2014) · Zbl 1291.83017 · doi:10.1007/s10714-014-1693-3
[53] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[54] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[55] S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev. D90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
[56] Baggioli, M.; Padhi, B.; Phillips, PW; Setty, C., Conjecture on the Butterfly Velocity across a Quantum Phase Transition, JHEP, 07, 049 (2018) · Zbl 1395.81202 · doi:10.1007/JHEP07(2018)049
[57] Mezei, M., On entanglement spreading from holography, JHEP, 05, 064 (2017) · Zbl 1380.81348 · doi:10.1007/JHEP05(2017)064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.