×

Linear response of entanglement entropy from holography. (English) Zbl 1383.81244

Summary: For time-independent excited states in conformal field theories, the entanglement entropy of small subsystems satisfies a ‘first law’-like relation, in which the change in entanglement is proportional to the energy within the entangling region. Such a law holds for time-dependent scenarios as long as the state is perturbatively close to the vacuum, but is not expected otherwise. In this paper we use holography to investigate the spread of entanglement entropy for unitary evolutions of special physical interest, the so-called global quenches. We model these using AdS-Vaidya geometries. We find that the first law of entanglement is replaced by a linear response relation, in which the energy density takes the role of the source and is integrated against a time-dependent kernel with compact support. For adiabatic quenches the standard first law is recovered, while for rapid quenches the linear response includes an extra term that encodes the process of thermalization. This extra term has properties that resemble a time-dependent ‘relative entropy’. We propose that this quantity serves as a useful order parameter to characterize far-from-equilibrium excited states. We illustrate our findings with concrete examples, including generic power-law and periodically driven quenches.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
83C15 Exact solutions to problems in general relativity and gravitational theory

References:

[1] D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.71 (1993) 1291 [gr-qc/9305007] [INSPIRE]. · Zbl 0972.81504
[2] J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys.16 (1975) 985 [INSPIRE]. · Zbl 0316.46062 · doi:10.1063/1.522605
[3] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[4] P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys.84 (1982) 71 [INSPIRE]. · Zbl 0491.46060 · doi:10.1007/BF01208372
[5] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[6] J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech.1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE]. · Zbl 1456.81364 · doi:10.1088/1742-5468/2016/12/123103
[7] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.0504 (2005) P04010 [cond-mat/0503393] [INSPIRE]. · Zbl 1456.82578
[8] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[9] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[10] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[11] U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys.B 563 (1999) 279 [hep-th/9905227] [INSPIRE]. · Zbl 0953.83038 · doi:10.1016/S0550-3213(99)00511-8
[12] U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP02 (2000) 039 [hep-th/9912209] [INSPIRE]. · Zbl 0959.83024 · doi:10.1088/1126-6708/2000/02/039
[13] S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS, JHEP02 (2002) 003 [hep-th/0112099] [INSPIRE]. · doi:10.1088/1126-6708/2002/02/003
[14] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[15] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[16] J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP11 (2010) 149 [arXiv:1006.4090] [INSPIRE]. · Zbl 1294.81128 · doi:10.1007/JHEP11(2010)149
[17] T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys.13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015 · doi:10.1088/1367-2630/13/4/045017
[18] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[19] H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE]. · doi:10.1103/PhysRevLett.112.011601
[20] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev.D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
[21] V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett.106 (2011) 191601 [arXiv:1012.4753] [INSPIRE]. · doi:10.1103/PhysRevLett.106.191601
[22] V. Balasubramanian et al., Holographic Thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
[23] V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev.D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].
[24] E. Caceres and A. Kundu, Holographic Thermalization with Chemical Potential, JHEP09 (2012) 055 [arXiv:1205.2354] [INSPIRE]. · doi:10.1007/JHEP09(2012)055
[25] R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP06 (2012) 081 [arXiv:1204.2309] [INSPIRE]. · Zbl 1397.81050 · doi:10.1007/JHEP06(2012)081
[26] E. Caceres, A. Kundu, J.F. Pedraza and W. Tangarife, Strong Subadditivity, Null Energy Condition and Charged Black Holes, JHEP01 (2014) 084 [arXiv:1304.3398] [INSPIRE]. · doi:10.1007/JHEP01(2014)084
[27] Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in holographic thermalization captured by horizon interiors and mutual information, JHEP09 (2013) 057 [arXiv:1306.0210] [INSPIRE]. · doi:10.1007/JHEP09(2013)057
[28] Y.-Z. Li, S.-F. Wu and G.-H. Yang, Gauss-Bonnet correction to Holographic thermalization: two-point functions, circular Wilson loops and entanglement entropy, Phys. Rev.D 88 (2013) 086006 [arXiv:1309.3764] [INSPIRE].
[29] W. Fischler, S. Kundu and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, JHEP07 (2014) 021 [arXiv:1311.5519] [INSPIRE]. · doi:10.1007/JHEP07(2014)021
[30] V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP03 (2014) 097 [arXiv:1312.6887] [INSPIRE]. · doi:10.1007/JHEP03(2014)097
[31] M. Alishahiha, A. Faraji Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev.D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].
[32] P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP08 (2014) 051 [arXiv:1401.6088] [INSPIRE]. · doi:10.1007/JHEP08(2014)051
[33] V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Dynamics of gravitational collapse and holographic entropy production, Phys. Rev.D 90 (2014) 064033 [arXiv:1405.7015] [INSPIRE].
[34] A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP02 (2015) 017 [Erratum ibid.07 (2015) 137] [arXiv:1410.6201] [INSPIRE]. · Zbl 1388.83092
[35] E. Caceres, A. Kundu, J.F. Pedraza and D.-L. Yang, Weak Field Collapse in AdS: Introducing a Charge Density, JHEP06 (2015) 111 [arXiv:1411.1744] [INSPIRE]. · Zbl 1388.83195 · doi:10.1007/JHEP06(2015)111
[36] S.-J. Zhang, B. Wang, E. Abdalla and E. Papantonopoulos, Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary, Phys. Rev.D 91 (2015) 106010 [arXiv:1412.7073] [INSPIRE].
[37] V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Gravitational collapse of thin shells: Time evolution of the holographic entanglement entropy, JHEP06 (2015) 126 [arXiv:1502.01277] [INSPIRE]. · Zbl 1388.83278 · doi:10.1007/JHEP06(2015)126
[38] S.-J. Zhang and E. Abdalla, Holographic Thermalization in Charged Dilaton Anti-de Sitter Spacetime, Nucl. Phys.B 896 (2015) 569 [arXiv:1503.07700] [INSPIRE]. · Zbl 1331.83139 · doi:10.1016/j.nuclphysb.2015.05.005
[39] E. Caceres, M. Sanchez and J. Virrueta, Holographic Entanglement Entropy in Time Dependent Gauss-Bonnet Gravity, JHEP09 (2017) 127 [arXiv:1512.05666] [INSPIRE]. · Zbl 1382.83081 · doi:10.1007/JHEP09(2017)127
[40] G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic quenches towards a Lifshitz point, JHEP02 (2016) 014 [arXiv:1511.08843] [INSPIRE]. · Zbl 1388.83198 · doi:10.1007/JHEP02(2016)014
[41] D. Roychowdhury, Holographic thermalization from nonrelativistic branes, Phys. Rev.D 93 (2016) 106008 [arXiv:1601.00136] [INSPIRE].
[42] I.Ya. Aref’eva, A.A. Golubtsova and E. Gourgoulhon, Analytic black branes in Lifshitz-like backgrounds and thermalization, JHEP09 (2016) 142 [arXiv:1601.06046] [INSPIRE]. · Zbl 1390.83308
[43] M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP05 (2017) 065 [arXiv:1608.05101] [INSPIRE]. · Zbl 1380.81349 · doi:10.1007/JHEP05(2017)065
[44] M. Mezei, On entanglement spreading from holography, JHEP05 (2017) 064 [arXiv:1612.00082] [INSPIRE]. · Zbl 1380.81348 · doi:10.1007/JHEP05(2017)064
[45] D.S. Ageev and I.Ya. Aref’eva, Memory Loss in Holographic Non-equilibrium Heating, arXiv:1704.07747 [INSPIRE].
[46] H. Xu, Entanglement growth during Van der Waals like phase transition, Phys. Lett.B 772 (2017) 517 [arXiv:1705.02604] [INSPIRE]. · doi:10.1016/j.physletb.2017.07.010
[47] M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP05 (2013) 080 [arXiv:1302.5703] [INSPIRE]. · Zbl 1342.83111 · doi:10.1007/JHEP05(2013)080
[48] T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562 [INSPIRE]. · Zbl 1437.83118
[49] J.F. Pedraza, Evolution of nonlocal observables in an expanding boost-invariant plasma, Phys. Rev.D 90 (2014) 046010 [arXiv:1405.1724] [INSPIRE].
[50] A.F. Astaneh and A.E. Mosaffa, Quantum Local Quench, AdS/BCFT and Yo-Yo String, JHEP05 (2015) 107 [arXiv:1405.5469] [INSPIRE]. · Zbl 1388.83166 · doi:10.1007/JHEP05(2015)107
[51] M. Rangamani, M. Rozali and A. Vincart-Emard, Dynamics of Holographic Entanglement Entropy Following a Local Quench, JHEP04 (2016) 069 [arXiv:1512.03478] [INSPIRE]. · Zbl 1388.81068
[52] J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of local quantum quenches, JHEP08 (2016) 127 [arXiv:1605.05987] [INSPIRE]. · doi:10.1007/JHEP08(2016)127
[53] C. Ecker, D. Grumiller, P. Stanzer, S.A. Stricker and W. van der Schee, Exploring nonlocal observables in shock wave collisions, JHEP11 (2016) 054 [arXiv:1609.03676] [INSPIRE]. · Zbl 1390.83156 · doi:10.1007/JHEP11(2016)054
[54] M. Rozali and A. Vincart-Emard, Comments on Entanglement Propagation, JHEP06 (2017) 044 [arXiv:1702.05869] [INSPIRE]. · Zbl 1380.81057 · doi:10.1007/JHEP06(2017)044
[55] J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and P. Witkowski, Time evolution of entanglement for holographic steady state formation, JHEP10 (2017) 034 [arXiv:1705.04696] [INSPIRE]. · Zbl 1383.81207 · doi:10.1007/JHEP10(2017)034
[56] A. Jahn and T. Takayanagi, Holographic Entanglement Entropy of Local Quenches in AdS4/CFT3: A Finite-Element Approach, arXiv:1705.04705 [INSPIRE]. · Zbl 1387.81322
[57] M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev.A 78 (2008) 010306 [arXiv:0804.3559]. · doi:10.1103/PhysRevA.78.010306
[58] V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, arXiv:1608.00614. · Zbl 1404.82033
[59] H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP07 (2016) 077 [arXiv:1509.05044] [INSPIRE]. · Zbl 1390.83092 · doi:10.1007/JHEP07(2016)077
[60] C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev.D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].
[61] S. Leichenauer and M. Moosa, Entanglement Tsunami in (1+1)-Dimensions, Phys. Rev.D 92 (2015) 126004 [arXiv:1505.04225] [INSPIRE].
[62] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement Scrambling in 2d Conformal Field Theory, JHEP09 (2015) 110 [arXiv:1506.03772] [INSPIRE]. · Zbl 1388.83165 · doi:10.1007/JHEP09(2015)110
[63] S. Kundu and J.F. Pedraza, Spread of entanglement for small subsystems in holographic CFTs, Phys. Rev.D 95 (2017) 086008 [arXiv:1602.05934] [INSPIRE].
[64] A. O’Bannon, J. Probst, R. Rodgers and C.F. Uhlemann, First law of entanglement rates from holography, Phys. Rev.D 96 (2017) 066028 [arXiv:1612.07769] [INSPIRE].
[65] M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP08 (2016) 165 [arXiv:1604.06808] [INSPIRE]. · Zbl 1390.83133 · doi:10.1007/JHEP08(2016)165
[66] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett.110 (2013) 091602 [arXiv:1212.1164] [INSPIRE]. · doi:10.1103/PhysRevLett.110.091602
[67] D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP08 (2013) 102 [arXiv:1305.2728] [INSPIRE]. · Zbl 1342.83093
[68] G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP12 (2013) 020 [arXiv:1305.3291] [INSPIRE]. · doi:10.1007/JHEP12(2013)020
[69] W.-z. Guo, S. He and J. Tao, Note on Entanglement Temperature for Low Thermal Excited States in Higher Derivative Gravity, JHEP08 (2013) 050 [arXiv:1305.2682] [INSPIRE]. · doi:10.1007/JHEP08(2013)050
[70] L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
[71] A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev.D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].
[72] C.A. Agón, A. Guijosa and J.F. Pedraza, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP06 (2014) 043 [arXiv:1402.5961] [INSPIRE]. · doi:10.1007/JHEP06(2014)043
[73] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP07 (2012) 093 [arXiv:1203.1044] [INSPIRE]. · Zbl 1397.83155 · doi:10.1007/JHEP07(2012)093
[74] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE]. · Zbl 1342.83128 · doi:10.1007/JHEP08(2013)060
[75] T. Nishioka, Relevant Perturbation of Entanglement Entropy and Stationarity, Phys. Rev.D 90 (2014) 045006 [arXiv:1405.3650] [INSPIRE].
[76] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE]. · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[77] D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On Field Theory Thermalization from Gravitational Collapse, JHEP02 (2012) 119 [arXiv:1110.5823] [INSPIRE]. · Zbl 1309.81272 · doi:10.1007/JHEP02(2012)119
[78] D. Garfinkle and L.A. Pando Zayas, Rapid Thermalization in Field Theory from Gravitational Collapse, Phys. Rev.D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].
[79] S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP09 (2009) 034 [arXiv:0904.0464] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/034
[80] G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev.D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].
[81] L.K. Joshi, A. Mukhopadhyay, F. Preis and P. Ramadevi, Exact time-dependence of causal correlations and non-equilibrium density matrices in holographic systems, arXiv:1704.02936 [INSPIRE].
[82] A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139 · doi:10.1088/0264-9381/31/22/225007
[83] R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT, JHEP11 (2013) 016 [arXiv:1308.2132] [INSPIRE]. · doi:10.1007/JHEP11(2013)016
[84] M. Rangamani, M. Rozali and A. Wong, Driven Holographic CFTs, JHEP04 (2015) 093 [arXiv:1502.05726] [INSPIRE]. · Zbl 1388.83499 · doi:10.1007/JHEP04(2015)093
[85] P. Sabella-Garnier, Time dependence of entanglement entropy on the fuzzy sphere, JHEP08 (2017) 121 [arXiv:1705.01969] [INSPIRE]. · Zbl 1381.83083 · doi:10.1007/JHEP08(2017)121
[86] S. Leichenauer, M. Moosa and M. Smolkin, Dynamics of the Area Law of Entanglement Entropy, JHEP09 (2016) 035 [arXiv:1604.00388] [INSPIRE]. · Zbl 1390.83120 · doi:10.1007/JHEP09(2016)035
[87] T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE]. · Zbl 1390.83170 · doi:10.1007/JHEP07(2016)123
[88] M.J.S. Beach, J. Lee, C. Rabideau and M. Van Raamsdonk, Entanglement entropy from one-point functions in holographic states, JHEP06 (2016) 085 [arXiv:1604.05308] [INSPIRE]. · Zbl 1388.83180 · doi:10.1007/JHEP06(2016)085
[89] S.F. Lokhande, G.W.J. Oling and J.F. Pedraza, Spread of entanglement in holographic non-relativistic theories, to appear. · Zbl 1383.81244
[90] K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Electric Field Quench in AdS/CFT, JHEP09 (2014) 126 [arXiv:1407.0798] [INSPIRE]. · doi:10.1007/JHEP09(2014)126
[91] S. Amiri-Sharifi, H.R. Sepangi and M. Ali-Akbari, Electric Field Quench, Equilibration and Universal Behavior, Phys. Rev.D 91 (2015) 126007 [arXiv:1504.03559] [INSPIRE].
[92] S. Amiri-Sharifi, M. Ali-Akbari, A. Kishani-Farahani and N. Shafie, Double Relaxation via AdS/CFT, Nucl. Phys.B 909 (2016) 778 [arXiv:1601.04281] [INSPIRE]. · Zbl 1342.81389 · doi:10.1016/j.nuclphysb.2016.06.011
[93] M. Ali-Akbari and F. Charmchi, Holographic Equilibration under External Dynamical Electric Field, arXiv:1612.09098 [INSPIRE]. · Zbl 1378.81088
[94] G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev.D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].
[95] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE]. · Zbl 0984.83043 · doi:10.1007/s002200100381
[96] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE]. · Zbl 1044.83009 · doi:10.1088/0264-9381/19/22/306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.