×

Spectral decimation of a self-similar version of almost Mathieu-type operators. (English) Zbl 1508.34080

Summary: We introduce and study self-similar versions of the one-dimensional almost Mathieu operators. Our definition is based on a class of self-similar Laplacians \(\{\Delta_p\}_{p\in(0, 1)}\) instead of the standard discrete Laplacian and includes the classical almost Mathieu operators as a particular case, namely, when the Laplacian’s parameter is \(p = \frac{1}{2}\). Our main result establishes that the spectra of these self-similar almost Mathieu operators can be described by the spectra of the corresponding self-similar Laplacians through the spectral decimation framework used in the context of spectral analysis on fractals. The spectral-type of the self-similar Laplacians used in our model is singularly continuous when \(p \neq \frac{1}{2}\). In these cases, the self-similar almost Mathieu operators also have singularly continuous spectra despite the periodicity of the potentials. In addition, we derive an explicit formula of the integrated density of states of the self-similar almost Mathieu operators as the weighted pre-images of the balanced invariant measure on a specific Julia set.
©2022 American Institute of Physics

MSC:

34K08 Spectral theory of functional-differential operators
34L05 General spectral theory of ordinary differential operators
26A33 Fractional derivatives and integrals
47E07 Functional-differential and differential-difference operators
47B39 Linear difference operators
39A70 Difference operators
34B40 Boundary value problems on infinite intervals for ordinary differential equations

References:

[1] Akkermans, E.; Don, Y.; Rosenberg, J.; Schochet, C. L., Relating diffraction and spectral data of aperiodic tilings: Towards a Bloch theorem, J. Geom. Phys., 165, 104217 (2021) · Zbl 1467.52029 · doi:10.1016/j.geomphys.2021.104217
[2] Marx, C. A.; Jitomirskaya, S., Dynamics and spectral theory of quasi-periodic Schrödinger-type operators, Ergodic Theory Dyn. Syst., 37, 8, 2353-2393 (2017) · Zbl 1384.37011 · doi:10.1017/etds.2016.16
[3] Wilkinson, A., What are Lyapunov exponents, and why are they interesting?, Bull. Am. Math. Soc., 54, 1, 79-105 (2017) · Zbl 1390.37041 · doi:10.1090/bull/1552
[4] Harper, P. G., Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc., London, Sect. A, 68, 10, 874-878 (1955) · Zbl 0065.23708 · doi:10.1088/0370-1298/68/10/304
[5] Hofstadter, D. R., Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, 14, 2239-2249 (1976) · doi:10.1103/physrevb.14.2239
[6] Dinaburg, E.; Sinaĭ, J., The one-dimensional Schrödinger equation with quasiperiodic potential, Funkcional Anal. Priložen, 9, 4, 8-21 (1975)
[7] Moser, J., An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum, Comment. Math. Helv., 56, 1, 198-224 (1981) · Zbl 0477.34018 · doi:10.1007/bf02566210
[8] Avila, A.; Jitomirskaya, S., The ten Martini problem, Ann. Math., 170, 1, 303-342 (2009) · Zbl 1166.47031 · doi:10.4007/annals.2009.170.303
[9] Béllissard, J.; Simon, B., Cantor spectrum for the almost Mathieu equation, J. Funct. Anal., 48, 3, 408-419 (1982) · Zbl 0516.47018 · doi:10.1016/0022-1236(82)90094-5
[10] Jitomirskaya, S., Metal-insulator transition for the almost Mathieu operator, Ann. Math., 150, 3, 1159-1175 (1999) · Zbl 0946.47018 · doi:10.2307/121066
[11] van Mouche, P., The coexistence problem for the discrete Mathieu operator, Commun. Math. Phys., 122, 1, 23-33 (1989) · Zbl 0669.34016 · doi:10.1007/bf01221406
[12] Alexander, S., Some properties of the spectrum of the Sierpiński gasket in a magnetic field, Phys. Rev. B, 29, 10, 5504-5508 (1984) · doi:10.1103/physrevb.29.5504
[13] Domany, E.; Alexander, S.; Bensimon, D.; Kadanoff, L. P., Solutions to the Schrödinger equation on some fractal lattices, Phys. Rev. B, 28, 6, 3110-3123 (1983) · doi:10.1103/physrevb.28.3110
[14] Rammal, R., Spectrum of harmonic excitations on fractals, J. Phys., 45, 2, 191-206 (1984) · doi:10.1051/jphys:01984004502019100
[15] Rammal, R.; Toulouse, G., Random walks on fractal structures and percolation clusters, J. Phys. Lett., 44, 1, 13-22 (1983) · doi:10.1051/jphyslet:0198300440101300
[16] Béllissard, J., Renormalization group analysis and quasicrystals, Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), 118-148 (1992), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0789.58080
[17] Kigami, J., Analysis on Fractals (2001), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0998.28004
[18] Malozemov, L.; Teplyaev, A., Self-similarity, operators and dynamics, Math. Phys., Anal. Geom., 6, 3, 201-218 (2003) · Zbl 1021.05069 · doi:10.1023/a:1024931603110
[19] Strichartz, R. S., Fractafolds based on the Sierpiński gasket and their spectra, Trans. Am. Math. Soc., 355, 10, 4019-4043 (2003) · Zbl 1041.28006 · doi:10.1090/s0002-9947-03-03171-4
[20] Strichartz, R. S.; Teplyaev, A., Spectral analysis on infinite Sierpiński fractafolds, J. Anal. Math., 116, 255-297 (2012) · Zbl 1272.28012 · doi:10.1007/s11854-012-0007-5
[21] Bajorin, N.; Chen, T.; Dagan, A.; Emmons, C.; Hussein, M.; Khalil, M.; Mody, P.; Steinhurst, B.; Teplyaev, A., Vibration spectra of finitely ramified, symmetric fractals, Fractals, 16, 3, 243-258 (2008) · Zbl 1160.28302 · doi:10.1142/s0218348x08004010
[22] Fukushima, M.; Shima, T., On a spectral analysis for the Sierpiński gasket, Potential Anal., 1, 1, 1-35 (1992) · Zbl 1081.31501 · doi:10.1007/bf00249784
[23] Krön, B.; Teufl, E., Asymptotics of the transition probabilities of the simple random walk on self-similar graphs, Trans. Am. Math. Soc., 356, 1, 393-414 (2004) · Zbl 1030.60064 · doi:10.1090/s0002-9947-03-03352-x
[24] Shima, T., On eigenvalue problems for the random walks on the Sierpiński pre-gaskets, Jpn. J. Ind. Appl. Math., 8, 1, 127-141 (1991) · Zbl 0715.60088 · doi:10.1007/bf03167188
[25] Shima, T., The eigenvalue problem for the Laplacian on the Sierpiński gasket, Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990), 279-288 (1993), Longman Scientific & Technical: Longman Scientific & Technical, Harlow · Zbl 0787.60075
[26] Shirai, T., The spectrum of infinite regular line graphs, Trans. Am. Math. Soc., 352, 1, 115-132 (2000) · Zbl 0931.05048 · doi:10.1090/s0002-9947-99-02497-6
[27] Strichartz, R., The Laplacian on the Sierpinski gasket via the method of averages, Pac. J. Math., 201, 1, 241-256 (2001) · Zbl 1090.35064 · doi:10.2140/pjm.2001.201.241
[28] Strichartz, R., Differential Equations on Fractals (2006), Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 1190.35001
[29] Strichartz, R., Transformation of spectra of graph Laplacians, Rocky Mt. J. Math., 40, 6, 2037-2062 (2010) · Zbl 1206.05065 · doi:10.1216/rmj-2010-40-6-2037
[30] Teplyaev, A., Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal., 159, 2, 537-567 (1998) · Zbl 0924.58104 · doi:10.1006/jfan.1998.3297
[31] Chen, J. P.; Teplyaev, A., Singularly continuous spectrum of a self-similar Laplacian on the half-line, J. Math. Phys., 57, 5, 052104 (2016) · Zbl 1341.60066 · doi:10.1063/1.4949471
[32] Mograby, G.; Balu, R.; Okoudjou, K.; Teplyaev, A., Spectral decimation of piecewise centrosymmetric Jacobi operators on graphs (2022)
[33] Teplyaev, A., Spectral zeta functions of fractals and the complex dynamics of polynomials, Trans. Am. Math. Soc., 359, 9, 4339-4358 (2007) · Zbl 1129.28010 · doi:10.1090/s0002-9947-07-04150-5
[34] Bird, E.; Ngai, S.; Teplyaev, A., Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec, 27, 2, 135-168 (2003) · Zbl 1102.34066
[35] Chan, J. F.-C.; Ngai, S.-M.; Teplyaev, A., One-dimensional wave equations defined by fractal Laplacians, J. Anal. Math., 127, 219-246 (2015) · Zbl 1386.35411 · doi:10.1007/s11854-015-0029-x
[36] Derfel, G.; Grabner, P. J.; Vogl, F., Laplace operators on fractals and related functional equations, J. Phys. A: Math. Theor., 45, 46, 463001 (2012) · Zbl 1348.35288 · doi:10.1088/1751-8113/45/46/463001
[37] Fang, S.; King, D.; Lee, E.; Strichartz, R., Spectral decimation for families of self-similar symmetric Laplacians on the Sierpiński gasket, J. Fractal Geom., 7, 1, 1-62 (2020) · Zbl 1437.30016 · doi:10.4171/jfg/83
[38] Avila, A.; Krikorian, R., Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. Math., 164, 3, 911-940 (2006) · Zbl 1138.47033 · doi:10.4007/annals.2006.164.911
[39] Avron, J.; van Mouche, P. H. M.; Simon, B., On the measure of the spectrum for the almost Mathieu operator, Commun. Math. Phys., 132, 1, 103-118 (1990) · Zbl 0724.47002 · doi:10.1007/bf02278001
[40] Choi, M.; Elliott, G.; Yui, N., Gauss polynomials and the rotation algebra, Invent. Math., 99, 2, 225-246 (1990) · Zbl 0665.46051 · doi:10.1007/bf01234419
[41] Helffer, B.; Sjöstrand, J., Semiclassical analysis for Harper’s equation. III: Cantor structure of the spectrum, Mém. Soc. Math. Fr., 1, 39, 1-124 (1989) · Zbl 0725.34099 · doi:10.24033/msmf.346
[42] Last, Y., Zero measure spectrum for the almost Mathieu operator, Commun. Math. Phys., 164, 2, 421-432 (1994) · Zbl 0814.11040 · doi:10.1007/bf02101708
[43] Puig, J., Cantor spectrum for the almost Mathieu operator, Commun. Math. Phys., 244, 2, 297-309 (2004) · Zbl 1075.39021 · doi:10.1007/s00220-003-0977-3
[44] Sinaĭ, Y., Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys., 46, 5-6, 861-909 (1987) · Zbl 0682.34023 · doi:10.1007/bf01011146
[45] Cantoni, A.; Butler, P., Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13, 3, 275-288 (1976) · Zbl 0326.15007 · doi:10.1016/0024-3795(76)90101-4
[46] Vein, R.; Dale, P., Determinants and Their Applications in Mathematical Physics (1999), Springer-Verlag: Springer-Verlag, New York · Zbl 0913.15005
[47] Weaver, J. R., Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon., 92, 10, 711-717 (1985) · Zbl 0619.15021 · doi:10.1080/00029890.1985.11971719
[48] Avni, N.; Breuer, J.; Simon, B., Periodic Jacobi matrices on trees, Adv. Math., 370, 107241 (2020) · Zbl 1512.47056 · doi:10.1016/j.aim.2020.107241
[49] Andrews, U.; Bonik, G.; Chen, J. P.; Martin, R. W.; Teplyaev, A., Wave equation on one-dimensional fractals with spectral decimation and the complex dynamics of polynomials, J. Fourier Anal. Appl., 23, 5, 994-1027 (2017) · Zbl 1382.35148 · doi:10.1007/s00041-016-9494-6
[50] Malozemov, L.; Teplyaev, A., Pure point spectrum of the Laplacians on fractal graphs, J. Funct. Anal., 129, 2, 390-405 (1995) · Zbl 0822.05045 · doi:10.1006/jfan.1995.1056
[51] Weidmann, J., Strong operator convergence and spectral theory of ordinary differential operators, Univ. Iagell. Acta Math., 34, 153-163 (1997) · Zbl 0964.47004
[52] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis (1972), Academic Press: Academic Press, New York; London · Zbl 0242.46001
[53] Bajorin, N.; Chen, T.; Dagan, A.; Emmons, C.; Hussein, M.; Khalil, M.; Mody, P.; Steinhurst, B.; Teplyaev, A., Vibration modes of 3n-gaskets and other fractals, J. Phys. A: Math. Theor., 41, 1, 015101 (2008) · Zbl 1181.28007 · doi:10.1088/1751-8113/41/1/015101
[54] Kirsch, W., An invitation to random Schrödinger operators, Random Schrödinger Operators, 1-119 (2008), Société Mathématique de France: Société Mathématique de France, Paris · Zbl 1162.82004
[55] Hare, K. E.; Steinhurst, B. A.; Teplyaev, A.; Zhou, D., Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals, Math. Res. Lett., 19, 3, 537-553 (2012) · Zbl 1271.28005 · doi:10.4310/mrl.2012.v19.n3.a3
[56] Brolin, H., Invariant sets under iteration of rational functions, Ark. Mat., 6, 103-144 (1965) · Zbl 0127.03401 · doi:10.1007/bf02591353
[57] Freire, A.; Lopes, A.; Mañé, R., An invariant measure for rational maps, Bol. Soc. Bras. Mat., 14, 1, 45-62 (1983) · Zbl 0568.58027 · doi:10.1007/bf02584744
[58] Mañé, R., On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Mat., 14, 1, 27-43 (1983) · Zbl 0568.58028 · doi:10.1007/bf02584743
[59] Smirnov, S., Spectral analysis of Julia sets (1996), California Institute of Technology; ProQuest LLC: California Institute of Technology; ProQuest LLC, Ann Arbor, MI
[60] Jean, B., Stability and instability in quantum mechanics, Trends and Developments in the Eighties (Bielefeld, 1982/1983), 1-106 (1985), World Science Publishing: World Science Publishing, Singapore · Zbl 0584.35024
[61] Fatou, P., Sur les équations fonctionnelles, Bull. Soc. Math. Fr., 2, 161-271 (1919) · JFM 47.0921.02 · doi:10.24033/bsmf.998
[62] Julia, G., Mémoire sur l’iteration des applications fonctionnelles, J. Math. Pures Appl., 8, 47-245 (1919) · JFM 46.0520.06
[63] Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N., Infinite-dimensional Jacobi matrices associated with Julia sets, Proc. Am. Math. Soc., 88, 4, 625-630 (1983) · Zbl 0535.30025 · doi:10.1090/s0002-9939-1983-0702288-6
[64] Barnsley, M. F.; Geronimo, J. S.; Harrington, A. N., Almost periodic Jacobi matrices associated with Julia sets for polynomials, Commun. Math. Phys., 99, 3, 303-317 (1985) · Zbl 0574.58016 · doi:10.1007/bf01240350
[65] Ionescu, M.; Pearse, E.; Rogers, L.; Ruan, H.-J.; Strichartz, R., The resolvent kernel for PCF self-similar fractals, Trans. Am. Math. Soc., 362, 8, 4451-4479 (2010) · Zbl 1204.28013 · doi:10.1090/s0002-9947-10-05098-1
[66] Rogers, L. G., Estimates for the resolvent kernel of the Laplacian on p.c.f. self-similar fractals and blowups, Trans. Am. Math. Soc., 364, 3, 1633-1685 (2012) · Zbl 1267.28012 · doi:10.1090/s0002-9947-2011-05551-0
[67] Bessis, D.; Geronimo, J. S.; Moussa, P., Function weighted measures and orthogonal polynomials on Julia sets, Constr. Approximation, 4, 1, 157-173 (1988) · Zbl 0635.42021 · doi:10.1007/bf02075456
[68] Strichartz, R. S., Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal., 87, 1, 51-148 (1989) · Zbl 0694.43008 · doi:10.1016/0022-1236(89)90004-9
[69] Akkermans, E., Statistical mechanics and quantum fields on fractals, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics, 1-21 (2013), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1321.81024
[70] Akkermans, E.; Dunne, G.; Levy, E., Wave propagation in one-dimension: Methods and applications to complex and fractal structures, Optics of Aperiodic Structures: Fundamentals and Device Applications, 407-449 (2014), Pan Stanford Publishing
[71] Béllissard, J., Gap labelling theorems for Schrödinger operators, From Number Theory to Physics (Les Houches, 1989), 538-630 (1992), Springer: Springer, Berlin · Zbl 0833.47056
[72] Béllissard, J.; Benedetti, R.; Gambaudo, J.-M., Spaces of tilings, finite telescopic approximations and gap-labeling, Commun. Math. Phys., 261, 1, 1-41 (2006) · Zbl 1116.46063 · doi:10.1007/s00220-005-1445-z
[73] Béllissard, J.; Bovier, A.; Ghez, J., Gap labelling theorems for one-dimensional discrete Schrödinger operators, Rev. Math. Phys., 4, 1, 1-37 (1992) · Zbl 0791.47009 · doi:10.1142/s0129055x92000029
[74] Melville, E., Mograby, G., Nagabandi, N., Rogers, L., and Teplyaev, A., “Gaps labeling theorem for the bubble-diamond self-similar graphs” (unpublished). arXiv.2204.11401
[75] Marcolli, M.; Mathai, V., Towards the fractional quantum Hall effect: A noncommutative geometry perspective, Noncommutative Geometry and Number Theory, 235-261 (2006), Friedrich Vieweg: Friedrich Vieweg, Wiesbaden · Zbl 1105.81068
[76] Benameur, M. T.; Mathai, V., Proof of the magnetic gap-labelling conjecture for principal solenoidal tori, J. Funct. Anal., 278, 3, 108323 (2020) · Zbl 1429.58039 · doi:10.1016/j.jfa.2019.108323
[77] Akkermans, E.; Montambaux, G., Mesoscopic Physics of Electrons and Photons (2007), Cambridge University Press
[78] Ovdat, O.; Akkermans, E., Breaking of continuous scale invariance to discrete scale invariance: A universal quantum phase transition, Fractal Geometry and Stochastics VI, 209-238 (2021), Springer · Zbl 1473.81062
[79] Shpielberg, O.; Don, Y.; Akkermans, E., Numerical study of continuous and discontinuous dynamical phase transitions for boundary-driven systems, Phys. Rev. E, 95, 3, 032137 (2017) · doi:10.1103/PhysRevE.95.032137
[80] Damanik, D.; Embree, M.; Gorodetski, A., Spectral properties of Schrödinger operators arising in the study of quasicrystals, Mathematics of Aperiodic Order, 307-370 (2015), Birkhäuser; Springer: Birkhäuser; Springer, Basel · Zbl 1378.81031
[81] Damanik, D.; Fillman, J.; Gorodetski, A., Multidimensional almost-periodic Schrödinger operators with Cantor spectrum, Ann. Henri Poincaré, 20, 4, 1393-1402 (2019) · Zbl 1474.34608 · doi:10.1007/s00023-019-00768-5
[82] Damanik, D.; Fillman, J.; Gorodetski, A., Multidimensional Schrödinger operators whose spectrum features a half-line and a Cantor set, J. Funct. Anal., 280, 7, 108911 (2021) · Zbl 1460.81026 · doi:10.1016/j.jfa.2020.108911
[83] Damanik, D.; Lenz, D., Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues, Commun. Math. Phys., 207, 3, 687-696 (1999) · Zbl 0962.81012 · doi:10.1007/s002200050742
[84] Damanik, D.; Lenz, D., Half-line eigenfunction estimates and purely singular continuous spectrum of zero Lebesgue measure, Forum Math., 16, 1, 109-128 (2004) · Zbl 1047.81021 · doi:10.1515/form.2004.001
[85] Becker, S.; Han, R.; Jitomirskaya, S., Cantor spectrum of graphene in magnetic fields, Invent. Math., 218, 3, 979-1041 (2019) · Zbl 1447.82041 · doi:10.1007/s00222-019-00916-y
[86] Jitomirskaya, S., On point spectrum of critical almost Mathieu operators, Adv. Math., 392, 107997 (2021) · Zbl 07415182 · doi:10.1016/j.aim.2021.107997
[87] Jitomirskaya, S.; Krüger, H.; Liu, W., Exact dynamical decay rate for the almost Mathieu operator, Math. Res. Lett., 27, 3, 789-808 (2020) · Zbl 1461.37029 · doi:10.4310/mrl.2020.v27.n3.a8
[88] Ni, X.; Chen, K.; Weiner, M.; Apigo, D. J.; Prodan, C.; Alu, A.; Prodan, E.; Khanikaev, A. B., Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals, Commun. Phys., 2, 1, 55 (2019) · doi:10.1038/s42005-019-0151-7
[89] Prodan, E.; Schulz-Baldes, H., Bulk and Boundary Invariants for Complex Topological Insulators (2016), Springer: Springer, Cham · Zbl 1342.82002
[90] Prodan, E.; Schulz-Baldes, H., Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators, Rev. Math. Phys., 28, 10, 1650024 (2016) · Zbl 1358.81130 · doi:10.1142/s0129055x16500240
[91] Prodan, E.; Schulz-Baldes, H., Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Funct. Anal., 271, 5, 1150-1176 (2016) · Zbl 1344.82055 · doi:10.1016/j.jfa.2016.06.001
[92] Rosa, M.; Ruzzene, M.; Prodan, E., Topological gaps by twisting, Commun. Phys., 4, 1, 130 (2021) · doi:10.1038/s42005-021-00630-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.