×

Quantifying the transition from spiral waves to spiral wave chimeras in a lattice of self-sustained oscillators. (English) Zbl 1480.34053

Summary: The present work is devoted to the detailed quantification of the transition from spiral waves to spiral wave chimeras in a network of self-sustained oscillators with two-dimensional geometry. The basic elements of the network under consideration are the van der Pol oscillator or the FitzHugh-Nagumo neuron. Both of the models are in the regime of relaxation oscillations. We analyze the regime by using the indices of local sensitivity, which enables us to evaluate the sensitivity of each oscillator at a finite time. Spiral waves are observed in both lattices when the interaction between elements has a local character. The dynamics of all the elements is regular. There are no pronounced high-sensitive regions. We have discovered that, when the coupling becomes nonlocal, the features of the system change significantly. The oscillation regime of the spiral wave center element switches to a chaotic one. Besides, a region with high sensitivity occurs around the wave center oscillator. Moreover, we show that the latter expands in space with elongation of the coupling range. As a result, an incoherence cluster of the spiral wave chimera is formed exactly within this high-sensitive area. A sharp increase in the values of the maximal Lyapunov exponent in the positive region leads to the formation of the incoherence cluster. Furthermore, we find that the system can even switch to a hyperchaotic regime when several Lyapunov exponents become positive.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C26 Relaxation oscillations for ordinary differential equations
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
34D08 Characteristic and Lyapunov exponents of ordinary differential equations

References:

[1] Kopell, N.; Howard, L. N., Plane Wave Solutions to Reaction-Diffusion Equations, Stud. Appl. Math., 52, 4, 291-328 (1973) · Zbl 0305.35081 · doi:10.1002/sapm1973524291
[2] Winfree, A. T., Rotating Chemical Reaction, Sci. Am., 230, 6, 82-95 (1974) · doi:10.1038/scientificamerican0674-82
[3] Hagan, P. S., Spiral Waves in Reaction-Diffusion Equations, SIAM J. Appl. Math., 42, 4, 762-786 (1982) · Zbl 0507.35007 · doi:10.1137/0142054
[4] Keener, J. P.; Tyson, J. J., Spiral Waves in the Belousov - Zhabotinskii Reaction, Phys. D, 21, 2-3, 307-324 (1986) · Zbl 0611.35041 · doi:10.1016/0167-2789(86)90007-2
[5] Biktashev, V. N., Diffusion of Autowaves: Evolution Equation for Slowly Varying Autowaves, Phys. D, 40, 1, 83-90 (1989) · Zbl 0683.76072 · doi:10.1016/0167-2789(89)90028-6
[6] Barkley, D.; Kness, M.; Tuckerman, L. S., Spiral-Wave Dynamics in a Simple Model of Excitable Media: The Transition from Simple to Compound Rotation, Phys. Rev. A, 42, 4, 2489-2492 (1990) · doi:10.1103/PhysRevA.42.2489
[7] Ermakova, E. A.; Panteleev, M. A.; Shnol, E. E., Blood Coagulation and Propagation of Autowaves in Flow, Pathophysiol. Haemos. Thromb., 34, 2-3, 135-142 (2005) · doi:10.1159/000089933
[8] Kuramoto, Y.; Shima, S.-I., Rotating Spirals without Phase Singularity in Reaction-Diffusion Systems, Prog. Theor. Phys., Suppl., 150, 115-125 (2003) · doi:10.1143/PTPS.150.115
[9] Zhang, H.; Ruan, X.-S.; Hu, B.; Ouyang, Q., Spiral Breakup due to Mechanical Deformation in Excitable Media, Phys. Rev. E, 70, 1 (2004) · doi:10.1103/PhysRevE.70.016212
[10] Martens, E. A.; Laing, C. R.; Strogatz, S. H., Solvable Model of Spiral Wave Chimeras, Phys. Rev. Lett., 104, 4 (2010) · doi:10.1103/PhysRevLett.104.044101
[11] Kuz’min, Yu. O., Deformation Autowaves in Fault Zones, Izv., Phys. Solid Earth, 48, 1, 1-16 (2012) · doi:10.1134/S1069351312010089
[12] Tang, X., Yang, T., Epstein, I. R., Liu, Y., Zhao, Y.; Gao, Q., Novel Type of Chimera Spiral Waves Arising from Decoupling of a Diffusible Component, J. Chem. Phys., 141, 2 (2014) · doi:10.1063/1.4886395
[13] Panaggio, M. J.; Abrams, D. M., Chimera States on the Surface of a Sphere, Phys. Rev. E (3), 91, 2 (2015) · Zbl 1392.34036 · doi:10.1103/PhysRevE.91.022909
[14] Li, B.-W.; Dierckx, H., Spiral Wave Chimeras in Locally Coupled Oscillator Systems, Phys. Rev. E, 93, 2 (2016) · doi:10.1103/PhysRevE.93.020202
[15] Weiss, S.; Deegan, R. D., Weakly and Strongly Coupled Belousov - Zhabotinsky Patterns, Phys. Rev. E, 95, 2 (2017) · doi:10.1103/PhysRevE.95.022215
[16] Totz, J. F.; Rode, J.; Tinsley, M. R.; Showalter, K.; Engel, H., Spiral Wave Chimera States in Large Populations of Coupled Chemical Oscillators, Nat. Phys., 14, 3, 282-285 (2018) · doi:10.1038/s41567-017-0005-8
[17] Kuramoto, Y.; Battogtokh, D., Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlin. Phen. Compl. Sys., 5, 4, 380-385 (2002)
[18] Abrams, D. M.; Strogatz, S. H., Chimera States for Coupled Oscillators, Phys. Rev. Lett., 93, 17 (2004) · doi:10.1103/PhysRevLett.93.174102
[19] Tanaka, D.; Kuramoto, Y., Complex Ginzburg - Landau Equation with Nonlocal Coupling, Phys. Rev. E, 68, 2 (2003) · doi:10.1103/PhysRevE.68.026219
[20] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and Phase-Cluster States in Populations of Coupled Chemical Oscillators, Nature Phys., 8, 662-665 (2012) · doi:10.1038/nphys2371
[21] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci. USA, 110, 26, 10563-10567 (2013) · doi:10.1073/pnas.1302880110
[22] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Transient Scaling and Resurgence of Chimera States in Networks of Boolean Phase Oscillators, Phys. Rev. E, 90, 3 (2014) · doi:10.1103/PhysRevE.90.030902
[23] Schmidt, L. T.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of Synchrony and Incoherence in Oscillatory Media under Nonlinear Global Coupling, Chaos, 24, 1 (2014) · doi:10.1063/1.4858996
[24] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Yu., Imperfect Chimera States for Coupled Pendula, Sci. Rep., 4 (2014) · doi:10.1038/srep06379
[25] Omelchenko, I.; Maistrenko, Yu.; Hövel, Ph.; Schöll, E., Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States, Phys. Rev. Lett., 106, 23 (2011) · doi:10.1103/PhysRevLett.106.234102
[26] Maistrenko, Y.; Sudakov, O.; Osir, O.; Maistrenko, V., Chimera States in Three Dimensions, New J. Phys., 17, 7 (2015) · doi:10.1088/1367-2630/17/7/073037
[27] Zakharova, A.; Kapeller, M.; Schöll, E., Chimera Death: Symmetry Breaking in Dynamical Networks, Phys. Rev. Lett., 112, 15 (2014) · doi:10.1103/PhysRevLett.112.154101
[28] Shepelev, I. A.; Strelkova, G. I.; Anishchenko, V. S., Chimera States and Intermittency in an Ensemble of Nonlocally Coupled Lorenz Systems, Chaos, 28, 6 (2018) · Zbl 1394.34096 · doi:10.1063/1.5020009
[29] Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A., Double-Well Chimeras in \(2\) D Lattice of Chaotic Bistable Elements, Commun. Nonlinear Sci. Numer. Simul., 54, 50-61 (2018) · Zbl 1452.37078 · doi:10.1016/j.cnsns.2017.05.017
[30] Laing, C. R., Chimeras in Networks with Purely Local Coupling, Phys. Rev. E, 92, 5 (2015) · doi:10.1103/PhysRevE.92.050904
[31] Clerc, M. G.; Coulibaly, S.; Ferré, M. A.; García-Ñustes, M. A.; Rojas, R. G., Chimera-Type States Induced by Local Coupling, Phys. Rev. E, 93, 5 (2016) · doi:10.1103/PhysRevE.93.052204
[32] Shepelev, I. A.; Bukh, A. V.; Ruschel, S.; Yanchuk, S.; Vadivasova, T. E., Local Sensitivity of Spatiotemporal Structures, Nonlinear Dyn., 94, 2, 1019-1027 (2018) · doi:10.1007/s11071-018-4407-7
[33] Yeldesbay, A.; Pikovsky, A.; Rosenblum, M., Chimeralike States in an Ensemble of Globally Coupled Oscillators, Phys. Rev. Lett., 112, 14 (2014) · doi:10.1103/PhysRevLett.112.144103
[34] Hagerstrom, A. M.; Murphy, Th. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental Observation of Chimeras in Coupled-Map Lattices, Nature Phys., 8, 658-661 (2012) · doi:10.1038/nphys2372
[35] Viktorov, E. A.; Habruseva, T.; Hegarty, S. P.; Huyet, G.; Kelleher, B., Coherence and Incoherence in an Optical Comb, Phys. Rev. Lett., 112, 22 (2014) · doi:10.1103/PhysRevLett.112.224101
[36] Rattenborg, N. C.; Amlaner, C. J.; Lima, S. L., Behavioral, Neurophysiological and Evolutionary Perspectives on Unihemispheric Sleep, Neurosci. Biobehav. Rev., 24, 8, 817-842 (2000) · doi:10.1016/S0149-7634(00)00039-7
[37] Mormann, F.; Kreuz, T.; Andrzejak, R. G.; David, P.; Lehnertz, K.; Elger, C. E., Epileptic Seizures Are Preceded by a Decrease in Synchronization, Epilepsy Res., 53, 3, 173-185 (2003) · doi:10.1016/S0920-1211(03)00002-0
[38] Andrzejak, R. G.; Rummel, C.; Mormann, F.; Schindler, K., All Together Now: Analogies between Chimera State Collapses and Epileptic Seizures, Sci. Rep., 6 (2016) · doi:10.1038/srep23000
[39] Bansal, K.; Garcia, J. O.; Tompson, S. H.; Verstynen, T.; Vettel, J. M.; Muldoon, S. F., Cognitive Chimera States in Human Brain Networks, Sci. Adv., 5, 4 (2019) · doi:10.1126/sciadv.aau8535
[40] Shima, S.; Kuramoto, Y., Rotating Spiral Waves with Phase-Randomized Core in Nonlocally Coupled Oscillators, Phys. Rev. E, 69, 3 (2004) · doi:10.1103/PhysRevE.69.036213
[41] Laing, C. R., Chimeras in Two-Dimensional Domains: Heterogeneity and the Continuum Limit, SIAM J. Appl. Dyn. Syst., 16, 2, 974-1014 (2017) · Zbl 1392.34035 · doi:10.1137/16M1086662
[42] Omel’chenko, O. E.; Wolfrum, M.; Yanchuk, S.; Maistrenko, Yu. L.; Sudakov, O., Stationary Patterns of Coherence and Incoherence in Two-Dimensional Arrays of Non-Locally-Coupled Phase Oscillators, Phys. Rev. E, 85, 3 (2012) · doi:10.1103/PhysRevE.85.036210
[43] Guo, S.; Dai, Q.; Cheng, H.; Li, H.; Xie, F.; Yang, J., Spiral Wave Chimera in Two-Dimensional Nonlocally Coupled Fitzhugh - Nagumo Systems, Chaos Solitons Fractals, 114, 394-399 (2018) · Zbl 1415.34070 · doi:10.1016/j.chaos.2018.07.029
[44] Schmidt, A.; Kasmatis, Th.; Hizanidas, J.; Provata, A.; Hövel, P., Chimera Patterns in Two-Dimensional Networks of Coupled Neurons, Phys. Rev. E, 95, 3 (2017) · doi:10.1103/PhysRevE.95.032224
[45] Bukh, A.; Anishchenko, V., Spiral, Target, and Chimera Wave Structures in a Two-Dimensional Ensemble of Nonlocally Coupled van der Pol Oscillators, Tech. Phys. Lett., 45, 7, 675-678 (2019) · doi:10.1134/S1063785019070046
[46] Shepelev, I. A.; Vadivasova, T. E., Variety of Spatio-Temporal Regimes in a 2D Lattice of Coupled Bistable FitzHugh - Nagumo Oscillators. Formation Mechanisms of Spiral and Double-Well Chimeras, Commun. Nonlinear Sci. Numer. Simul., 79 (2019) · Zbl 1508.92039 · doi:10.1016/j.cnsns.2019.104925
[47] Omel’chenko, E.; Knobloch, E., Chimerapedia: Coherence-Incoherence Patterns in One, Two and Three Dimensions, New J. Phys., 21, 9 (2019) · doi:10.1088/1367-2630/ab3f6b
[48] Haugland, S. W.; Schmidt, L.; Krischer, K., Self-Organized Alternating Chimera States in Oscillatory Media, Sci. Rep., 5 (2015) · doi:10.1038/srep09883
[49] Mikhailov, A. S.; Loskutov, A. Yu., Foundations of Synergetics 2: Complex Patterns (2012), Berlin: Springer, Berlin · Zbl 0729.58001
[50] Pertsov, A. M.; Ermakova, E. A.; Panfilov, A. V., Rotating Spiral Waves in a Modified FitzHugh - Nagumo Model, Phys. D, 14, 1, 117-124 (1984) · Zbl 0587.35080 · doi:10.1016/0167-2789(84)90008-3
[51] Zaritski, R. M.; Pertsov, A. M., Stable Spiral Structures and Their Interaction in Two-Dimensional Excitable Media, Phys. Rev. E (3), 66, 6 (2002) · doi:10.1103/PhysRevE.66.066120
[52] Cherry, E. M.; Fenton, F. H., Visualization of Spiral and Scroll Waves in Simulated and Experimental Cardiac Tissue, New J. Phys., 10, 12 (2008) · doi:10.1088/1367-2630/10/12/125016
[53] Cherry, E. M.; Fenton, F. H.; Gilmour, R. F., Jr., Mechanisms of Ventricular Arrhythmias: A Dynamical Systems-Based Perspective, Am. J. Physiol. Heart Circ. Physiol., 302, 12, 2451-2463 (2012) · doi:10.1152/ajpheart.00770.2011
[54] Bretschneider, T.; Anderson, K.; Ecke, M.; Müller-Taubenberger, A.; Schroth-Diez, B.; Ishikawa-Ankerhold, H. C.; Gerisch, G., The Three-Dimensional Dynamics of Actin Waves, A Model of Cytoskeletal Self-Organization, Biophys. J., 96, 7, 2888-2900 (2009) · doi:10.1016/j.bpj.2008.12.3942
[55] Pervolaraki, E.; Holden, A. V., Spatiotemporal Patterning of Uterine Excitation Patterns in Human Labour, Biosyst., 112, 2, 63-72 (2013) · doi:10.1016/j.biosystems.2013.03.012
[56] Bukh, A.; Strelkova, G.; Anishchenko, V., Spiral Wave Patterns in a Two-Dimensional Lattice of Nonlocally Coupled Maps Modeling Neural Activity, Chaos Solitons Fractals, 120, 75-82 (2019) · Zbl 1448.39030 · doi:10.1016/j.chaos.2018.11.037
[57] Rice, S. O., Mathematical Analysis of Random Noise, Bell Syst. Tech. J., 23, 3, 282-332 (1944) · Zbl 0063.06485 · doi:10.1002/j.1538-7305.1944.tb00874.x
[58] Wu, Z.-M.; Cheng, H.-Y.; Feng, Y.; Li, H.-H.; Dai, Q.-L.; Yang, J.-Z., Chimera States in Bipartite Networks of FitzHugh - Nagumo Oscillators, Front. Phys., 13, 2 (2018) · doi:10.1007/s11467-017-0737-z
[59] Kundu, S.; Majhi, S.; am, P., and Ghosh, D., Diffusion Induced Spiral Wave Chimeras in Ecological System, Eur. Phys. J. Spec. Top., 227, 983-993 (2018) · doi:10.1140/epjst/e2018-800011-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.