×

Dynamical stability of diffuse phase boundaries in compressible fluids. (English) Zbl 1391.76148

Bothe, Dieter (ed.) et al., Transport processes at fluidic interfaces. Basel: Birkhäuser/Springer (ISBN 978-3-319-56601-6/hbk; 978-3-319-56602-3/ebook). Advances in Mathematical Fluid Mechanics, 355-389 (2017).
Summary: Aiming at an understanding of the nonlinear stability of moving fluidic phase boundaries, this project has provided (a) solution theories for three basic systems of nonlinear partial differential equations that model two-phase fluid flow as well as (b) results on the existence of corresponding traveling waves and the spectrum of the operators that result from linearizing the PDEs about these waves.{ }The three models are the Navier-Stokes-Korteweg (NSK), the Navier-Stokes-Allen-Cahn (NSAC), and the Navier-Stokes-Cahn-Hilliard (NSCH) equations. For compressible NSAC and NSCH, the theories of strong solutions obtained seem to be the first ones in the literature. For NSK, a new theory of strong solutions has been developed, which in particular provides an alternative to the ‘quasi-incompressible’ approach that Abels et al. pursue for NSCH in the case of two separately incompressible phases of different density.{ }While for NSK the existence of traveling waves representing phase boundaries was known before, corresponding results have been newly obtained for NSAC and NSCH. For all three contexts, the project has established the spectral stability of these traveling waves. Viscous shock waves providing useful heuristic inspiration, fluidic interfaces corresponding to phase boundaries turn out to have their own flavour.
For the entire collection see [Zbl 1378.76006].

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
Full Text: DOI

References:

[1] Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463-506 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[2] Abels, H.: Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system. In: Nonlocal and Abstract Parabolic Equations and Their Applications. Banach Center Publ., vol. 86, pp. 9-19. Polish Acad. Sci. Inst. Math., Warsaw (2009) · Zbl 1167.76008
[3] Abels, H.: Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289, 45-73 (2009) · Zbl 1165.76050 · doi:10.1007/s00220-009-0806-4
[4] Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44, 316-340 (2012) · Zbl 1333.76079 · doi:10.1137/110829246
[5] Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[6] Abels, H., Röger, M.: Existence of weak solutions for a non-classical sharp interface model for a two-phase ow of viscous, incompressible fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2403-2424 (2009) · Zbl 1181.35343 · doi:10.1016/j.anihpc.2009.06.002
[7] Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22, 1150013 (2012) · Zbl 1242.76342 · doi:10.1142/S0218202511500138
[8] Abels, H., Depner, D., Garcke, H.: On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 1175-1190 (2013) · Zbl 1347.76052 · doi:10.1016/j.anihpc.2013.01.002
[9] Aki, G.L., Dreyer, W., Giesselmann, J., Kraus, C.: A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci. 24, 827-861 (2014) · Zbl 1293.35077 · doi:10.1142/S0218202513500693
[10] Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167-212 (1990) · Zbl 0705.35070
[11] Benzoni-Gavage, S.: Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlinear Anal. 31, 243-263 (1998) · Zbl 0928.76015 · doi:10.1016/S0362-546X(96)00309-4
[12] Benzoni-Gavage, S.: Stability of subsonic planar phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 150, 23-55 (1999) · Zbl 0980.76023 · doi:10.1007/s002050050179
[13] Benzoni-Gavage, S.: Linear stability of propagating phase boundaries in capillary fluids. Physica D 155, 235-273 (2001) · Zbl 1002.76031 · doi:10.1016/S0167-2789(01)00270-6
[14] Benzoni-Gavage, S., Freistühler, H.: Effects of surface tension on the stability of dynamical liquid-vapor interfaces. Arch. Ration. Mech. Anal. 174, 111-150 (2004) · Zbl 1081.76027 · doi:10.1007/s00205-004-0328-3
[15] Benzoni-Gavage, S., Danchin, R., Descombes, S., Jamet, D.: Structure of Korteweg models and stability of diffuse interfaces. Interfaces Free Bound. 7, 371-414 (2005) · Zbl 1106.35056 · doi:10.4171/IFB/130
[16] Benzoni-Gavage, S., Danchin, R., Descombes, S.: On the well-posedness for the Euler-Korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499-1579 (2007) · Zbl 1125.76060 · doi:10.1512/iumj.2007.56.2974
[17] Blesgen, T.: A generalisation of the Navier-Stokes equations to two-phase-flows. J. Phys. D: Appl. Phys. 32, 1119-1123 (1999) · doi:10.1088/0022-3727/32/10/307
[18] Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. (English summary) Acta Mech. 226, 1757-1805 (2015) · Zbl 1317.76082
[19] Bothe, D., Prüss, J.: On the two-phase Navier-Stokes equations with Boussinesq-Scriven surface fluid. J. Math. Fluid Mech. 12, 133-150 (2010) · Zbl 1261.35100 · doi:10.1007/s00021-008-0278-x
[20] Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175-212 (1999) · Zbl 0937.35123
[21] Brenner, H.: Kinematics of volume transport. Physica A 349, 11-59 (2005) · doi:10.1016/j.physa.2004.10.033
[22] Chen, Z., He, L., Zhao, H.: Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 422, 1213-1234 (2015) · Zbl 1307.35077 · doi:10.1016/j.jmaa.2014.09.050
[23] Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 97-133 (2001) · Zbl 1010.76075 · doi:10.1016/S0294-1449(00)00056-1
[24] Denk, R., Hieber, M., Prüss, J.: Optimal L^p- L^q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257, 193-224 (2007) · Zbl 1210.35066 · doi:10.1007/s00209-007-0120-9
[25] Ding, S., Li, Y., Luo, W.: Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn System in 1D. J. Math. Fluid Mech. 15, 335-360 (2012) · Zbl 1284.35307 · doi:10.1007/s00021-012-0104-3
[26] Dreyer, W., Giesselmann, J., Kraus, C., Rohde, C.: Asymptotic analysis for Korteweg models. Interfaces Free Bound. 14, 105-143 (2012) · Zbl 1241.76375 · doi:10.4171/IFB/275
[27] Dreyer, W., Giesselmann, J., Kraus, C.: A compressible mixture model with phase transition. Physica D 273/274, 1-13 (2014) · Zbl 1349.35289
[28] Dunn, J.E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95-133 (1985) · Zbl 0582.73004 · doi:10.1007/BF00250907
[29] Ericksen, J.L.: Liquid crystals with variable degree of orientation Arch. Ration. Mech. Anal. 113, 97-120 (1990) · Zbl 0729.76008 · doi:10.1007/BF00380413
[30] Evans, J.W.: Nerve axon equations. I-IV. Indiana Univ. Math. J. 22, 75-90 (1972) · Zbl 0236.92010 · doi:10.1512/iumj.1973.22.22009
[31] Feireisl, E., Rocca, E., Petzeltova, H., Schimperna, G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20, 1129-1160 (2010) · Zbl 1200.76155 · doi:10.1142/S0218202510004544
[32] Freistühler, H.: Phase transitions and traveling waves in compressible fluids. Arch. Ration. Mech. Anal. 211, 189-204 (2014) · Zbl 1290.35200 · doi:10.1007/s00205-013-0682-0
[33] Freistühler, H., Kotschote, M.: Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids. Arch. Ration. Mech. Anal. 224, 1-20 (2017) · Zbl 1366.35130 · doi:10.1007/s00205-016-1065-0
[34] Freistühler, H., Kotschote, M.: Models of two-phase fluid dynamics à la Allen-Cahn, Cahn-Hilliard, and … Korteweg! Confluentes Math. 7, 57-66 (2015) · Zbl 1353.76063 · doi:10.5802/cml.24
[35] Freistühler, H., Kotschote, M.: Internal structure of dynamic phase-transition fronts in a fluid with two compressible or incompressible phases. Bull. Inst. Math. Acad. Sin. (N.S.) 10, 541-552 (2015) · Zbl 1329.76364
[36] Freistühler, H., Szmolyan, P.: Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Ration. Mech. Anal. 195, 353-373 (2010) · Zbl 1188.35117 · doi:10.1007/s00205-009-0272-3
[37] Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27, 401-436 (2010) · Zbl 1184.35055 · doi:10.1016/j.anihpc.2009.11.013
[38] Gardner, R., Zumbrun, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51, 797-855 (1998) · Zbl 0933.35136 · doi:10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
[39] Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13, 223-249 (2011) · Zbl 1270.35366 · doi:10.1007/s00021-009-0013-2
[40] Haspot, B.: Existence of global strong solution for Korteweg system with large infinite energy initial data. J. Math. Anal. Appl. 438, 395-443 (2016) · Zbl 1334.35234 · doi:10.1016/j.jmaa.2016.01.047
[41] Hattori, H., Li, D.: The existence of global solutions to a fluid dynamic model for materials of Korteweg type. J. Partial Differ. Equ. 9, 323-342 (1996) · Zbl 0881.35095
[42] Jeans, J.: Introduction to the Kinetic Theory of Gases. Cambridge University Press, Cambridge (1940) · JFM 66.1177.06
[43] Jones, C.K.R.T.: Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Am. Math. Soc. 286, 431-469 (1984) · Zbl 0567.35044 · doi:10.1090/S0002-9947-1984-0760971-6
[44] Karlin, I.V., Gorban, A.N.: Hydrodynamics from Grad’s equations: what can we learn from exact solutions? Ann. Phys. (Leipzig) 11, 783-833 (2002) · Zbl 1068.76074
[45] Korteweg, D.J.: Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci. Exactes II 6, 1-24 (1901) · JFM 32.0756.02
[46] Kotschote, M.: Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type. J. Evol. Equ. 17, 359-385 (2017) · Zbl 1362.76048 · doi:10.1007/s00028-016-0380-0
[47] Kotschote, M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 679-696 (2008) · Zbl 1141.76053 · doi:10.1016/j.anihpc.2007.03.005
[48] Kotschote, M.: Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12, 473-484 (2010) · Zbl 1270.76063 · doi:10.1007/s00021-009-0298-1
[49] Kotschote, M.: On compressible non-isothermal fluids of non-Newtonian Korteweg-type. SIAM J. Math. Anal. 44, 74-101 (2012) · Zbl 1332.76047 · doi:10.1137/110821202
[50] Kotschote, M.: Strong solutions to the compressible non-isothermal Navier-Stokes equations. Adv. Math. Sci. Appl. 22, 319-347 (2012) · Zbl 1286.76126
[51] Kotschote, M.: Strong solutions to the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. Arch. Ration. Mech. Anal. 206, 489-514 (2012) · Zbl 1257.35143 · doi:10.1007/s00205-012-0538-z
[52] Kotschote, M.: Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ. Math. J. 63, 21-51 (2014) · Zbl 1310.76152 · doi:10.1512/iumj.2014.63.5187
[53] Kotschote, M.: Mixing rules and the Navier-Stokes-Cahn-Hilliard equations for compressible heat-conductive fluids. Bull. Braz. Math. Soc. (N.S.) 47, 457-471 (2016) · Zbl 1354.76039
[54] Kotschote, M.: Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Cahn-Hilliard and Navier-Stokes-Korteweg type (in preparation) · Zbl 1362.76048
[55] Kotschote, M., Zacher, R.: Strong solutions in the dynamical theory of compressible fluid mixtures. Math. Models Methods Appl. Sci. 25, 1217-1256 (2015) · Zbl 1329.76060 · doi:10.1142/S0218202515500311
[56] Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 2617-2654 (1998) · Zbl 0927.76007 · doi:10.1098/rspa.1998.0273
[57] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984) · Zbl 0537.76001 · doi:10.1007/978-1-4612-1116-7
[58] Prüss, J., Simonett, G.: On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 12, 311-345 (2010) · Zbl 1202.35359 · doi:10.4171/IFB/237
[59] Prüss, J., Shibata, Y., Shimizu, S., Simonett, G.: On well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Equ. Control Theory 1, 171-194 (2012) · Zbl 1302.76066 · doi:10.3934/eect.2012.1.171
[60] Prüss, J., Shimizu, S., Wilke, M.: Qualitative behaviour of incompressible two-phase flows with phase transitions: the case of non-equal densities. Commun. Partial Differ. Equ. 39, 1236-1283 (2014) · Zbl 1305.35157 · doi:10.1080/03605302.2013.821131
[61] Slemrod, M.: Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ration. Mech. Anal. 81, 301-315 (1983) · Zbl 0505.76082 · doi:10.1007/BF00250857
[62] Slemrod, M.: Dynamics of first order phase transitions. In: Phase Transformations and Material Instabilities in Solids (Madison, Wis., 1983). Publ. Math. Res. Center Univ. Wisconsin, vol. 52, pp. 163-203. Academic, Orlando, FL (1984) · Zbl 0603.76002
[63] Slemrod, M.: Chapman-Enskog implies viscosity-capillarity. Quart. Appl. Math. 70, 613-624 (2012) · Zbl 1247.35135 · doi:10.1090/S0033-569X-2012-01305-1
[64] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1994) · Zbl 0807.35002 · doi:10.1007/978-1-4612-0873-0
[65] Starovoitov, V.N.: The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes 62, 244-254 (1997) · Zbl 0921.35134 · doi:10.1007/BF02355911
[66] Volpert, V.: Elliptic Partial Differential Equations. Volume 1: Fredholm Theory of Elliptic Problems in Unbounded Domains. Monographs in Mathematics, vol. 101. Birkhäuser/Springer, Basel (2011) · Zbl 1222.35002
[67] Witterstein, G.: Phase change flows with mass exchange. Adv. Math. Sci. Appl. 21, 559-611 (2011) · Zbl 1256.35069
[68] Wolchover, N.: Famous fluid equations are incomplete. Quanta Magazine, July 2015. https://www.quantamagazine.org/20150721-famous-fluid-equations-are-incomplete
[69] Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Their Applications, vol. 47, pp. 307-516. Birkhäuser, Boston, MA (2001) · Zbl 0989.35089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.