×

Stability of the composite wave for compressible Navier-Stokes/Allen-Cahn system. (English) Zbl 1442.35348

Summary: This paper is devoted to the study of the nonlinear stability of the composite wave consisting of two rarefaction waves and a viscous contact wave for the Cauchy problem to a one-dimensional compressible non-isentropic Navier-Stokes/Allen-Cahn system which is a combination of the classical Navier-Stokes system with an Allen-Cahn phase field description. We first construct the composite wave through Euler equations under the assumption of \(\chi(x, t) \equiv 1\) for the large time behavior, and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding Cauchy problem of the non-isentropic Navier-Stokes/Allen-Cahn system. The proof is mainly based on a basic energy method.

MSC:

35Q35 PDEs in connection with fluid mechanics
35M10 PDEs of mixed type
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
76N15 Gas dynamics (general theory)
35Q30 Navier-Stokes equations
Full Text: DOI

References:

[1] Blesgen, T., A generalization of the Navier-Stokes equations to two-phase flows, J. Physica D32 (1999) 1119-1123.
[2] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids31 (2002) 41-68. · Zbl 1057.76060
[3] Chen, M. T. and Guo, X. W., Global large solutions for a coupled compressible Navier-Stokes/Allen-Cahn system with initial vacuum, Nonlinear Anal. Real World Appl.37 (2017) 350-373. · Zbl 1375.35364
[4] Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. (Springer-Verlag, 2010). · Zbl 1196.35001
[5] Ding, S. J., Li, Y. H. and Luo, W. L., Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D, J. Math. Fluid Mech.15 (2013) 335-360. · Zbl 1284.35307
[6] Evje, S. and Wen, H. Y., On the large time behavior of the compressible gas-liquid drift-flux model with slip, Math. Models Methods Appl. Sci.25 (2015) 2175-2215. · Zbl 1327.76151
[7] Evje, S. and Wen, H. Y., Global solutions of a viscous gas-liquid model with unequal fluid velocities in a closed conduit, SIAM J. Math. Anal.47 (2015) 381-406. · Zbl 1317.76083
[8] Evje, S. and Wen, H. Y., Weak solutions of a two-phase Navier-Stokes model with a general slip law, J. Funct. Anal.268 (2015) 93-139. · Zbl 1299.76272
[9] Feireisl, E., Petzeltová, H., Rocca, E. and Schimperna, G., Analysis of a phase-field model for two-phase compressible fluids, Math. Models Methods Appl. Sci.20 (2010) 1129-1160. · Zbl 1200.76155
[10] Freistühler, H. and Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Ration. Mech. Anal.224 (2017) 1-20. · Zbl 1366.35130
[11] Gal, C. G. and Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire27 (2010) 401-436. · Zbl 1184.35055
[12] Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Ration. Mech. Anal.95 (1986) 325-344. · Zbl 0631.35058
[13] Gurtin, M. E., Polignone, D. and Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci.6 (1996) 815-831. · Zbl 0857.76008
[14] Huang, F. M., Li, J. and Matsumura, A., Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system, Arch. Ration. Mech. Anal.197 (2010) 89-116. · Zbl 1273.76259
[15] Huang, F. M., Matsumura, A. and Xin, Z. P., Stability of contact discontinuities for the 1D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal.179 (2006) 55-77. · Zbl 1079.76032
[16] Huang, F. M., Xin, Z. P. and Yang, T., Contact discontinuity with general perturbations for gas motions, Adv. Math.219 (2008) 1246-1297. · Zbl 1155.35068
[17] Kotschote, M., Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type, Arch. Ration. Mech. Anal.206 (2012) 489-514. · Zbl 1257.35143
[18] Kotschote, M., Spectral analysis for travelling waves in compressible two-phase fluids of Navier-Stokes-Allen-Cahn type, J. Evol. Equ.17 (2017) 359-385. · Zbl 1362.76048
[19] Liu, T. P., Shock waves for compressible Navier-Stokes equations are stable, Comm. Pure Appl. Math.39 (1986) 565-594. · Zbl 0617.76069
[20] Liu, W. Y., Bertozzi, A. and Kolokolnikov, T., Diffuse interface surface tension models in an expanding flow, Commun. Math. Sci.10 (2012) 387-418. · Zbl 1272.35025
[21] Liu, T. P. and Xin, Z. P., Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations, Comm. Math. Phys.118 (1988) 451-465. · Zbl 0682.35087
[22] Lowengrub, J. and Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. A454 (1998) 2617-2654. · Zbl 0927.76007
[23] Luo, T., Yin, H. Y. and Zhu, C. J., Stability of the rarefaction wave for a coupled compressible Navier-Stokes/Allen-Cahn system, Math. Methods Appl. Sci.41 (2018) 4724-4736. · Zbl 1397.35021
[24] Matsumura, A. and Nishihara, K., Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math.3 (1986) 1-13. · Zbl 0612.76086
[25] Matsumura, A. and Nishihara, K., Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys.144 (1992) 325-335. · Zbl 0745.76069
[26] Smoller, J., Shock Waves and Reaction-Diffusion Equations, 2nd edn. (Springer-Verlag, 1994). · Zbl 0807.35002
[27] Xu, X., Zhao, L. Y. and Liu, C., Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations, SIAM J. Math. Anal.41 (2009) 2246-2282. · Zbl 1203.35191
[28] Yang, X. F., Feng, J. J., Liu, C. and Shen, J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys.218 (2006) 417-428. · Zbl 1158.76319
[29] Yin, H. Y. and Zhu, C. J., Asymptotic stability of superposition of stationary solutions and rarefaction waves for 1D Navier-Stokes/Allen-Cahn system, J. Differential Equations266 (2019) 7291-7326. · Zbl 1411.35034
[30] Zhao, L. Y., Guo, B. L. and Huang, H. Y., Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system, J. Math. Anal. Appl.384 (2011) 232-245. · Zbl 1231.35185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.