×

Diffuse-interface two-phase flow models with different densities: a new quasi-incompressible form and a linear energy-stable method. (English) Zbl 1390.76047

Summary: While various phase-field models have recently appeared for two-phase fluids with different densities, only some are known to be thermodynamically consistent, and practical stable schemes for their numerical simulation are lacking. In this paper, we derive a new form of thermodynamically-consistent quasi-incompressible diffuse-interface Navier-Stokes-Cahn-Hilliard model for a two-phase flow of incompressible fluids with different densities. The derivation is based on mixture theory by invoking the second law of thermodynamics and Coleman-Noll procedure. We also demonstrate that our model and some of the existing models are equivalent and we provide a unification between them. In addition, we develop a linear and energy-stable time-integration scheme for the derived model. Such a linearly-implicit scheme is nontrivial, because it has to suitably deal with all nonlinear terms, in particular those involving the density. Our proposed scheme is the first linear method for quasi-incompressible two-phase flows with non-solenoidal velocity that satisfies discrete energy dissipation independent of the time-step size, provided that the mixture density remains positive. The scheme also preserves mass. Numerical experiments verify the suitability of the scheme for two-phase flow applications with high density ratios using large time steps by considering the coalescence and breakup dynamics of droplets including pinching due to gravity.

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics

References:

[1] Abels, H., Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Commun. Math. Phys., 289, 45-73, (2009) · Zbl 1165.76050
[2] Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 1150013-1-40, (2012) · Zbl 1242.76342
[3] Aki, G. L.; Dreyer, W.; Giesselmann, J.; Kraus, C., A quasi-incompressible diffuse interface model with phase transition, Math. Models Methods Appl. Sci., 24, 827-861, (2014) · Zbl 1293.35077
[4] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139-165, (1998) · Zbl 1398.76051
[5] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., A phase-field model of solidification with convection, Physica D, 135, 175-194, (2000) · Zbl 0951.35112
[6] Bartels, S.; Müller, R.; Ortner, C., Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes, SIAM J. Numer. Anal., 49, 110-134, (2011) · Zbl 1235.65116
[7] Blowey, J. F.; Elliott, C. M., The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. part I: mathematical analysis, Euro. J. Appl. Math., 2, 233-280, (1991) · Zbl 0797.35172
[8] Bosch, J.; Stoll, M.; Benner, P., Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements, J. Comput. Phys., 262, 38-57, (2014) · Zbl 1349.65438
[9] Bowen, R.; Eringen, A., Continuum Physics, Theory of mixtures, 1-127, (1976), Academic Press
[10] Boyer, F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31, 41-68, (2002) · Zbl 1057.76060
[11] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Trans. Porous Media, 82, 463-483, (2010)
[12] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28, 258-267, (1958) · Zbl 1431.35066
[13] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13, 167-178, (1963) · Zbl 0113.17802
[14] de Gennes, P.-G.; Brochard-Wyart, F.; Queré, D., Capillarity and Wetting Pheno- mena: Drops, Bubbles, Pearls, Waves, (2004), Springer · Zbl 1139.76004
[15] Ding, H.; Spelt, P. D.; Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226, 2078-2095, (2007) · Zbl 1388.76403
[16] Elliott, C. M.; Rodrigues, J., The Cahn-Hilliard model for the kinetics of phase separation, Mathematical Models for Phase Change Problems: Proc. European Workshop held at Óbidos, 88, 35-73, (1989), Birkhäuser · Zbl 0692.73003
[17] Elliott, C. M.; Zheng, S., On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96, 339-357, (1986) · Zbl 0624.35048
[18] Eyre, D.; Bullard, J. W.; Chen, L.-Q.; Kalia, R. K.; Stoneham, A. M., Computational and Mathematical Models of Microstructural Evolution, 529, Unconditionally gradient stable time marching the Cahn-Hilliard equation, 39-46, (1998), Materials Research Society
[19] Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse-interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 1049-1072, (2006) · Zbl 1344.76052
[20] Feng, X.; Wu, H.-J., A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow, J. Comput. Math., 26, 767-796, (2008) · Zbl 1174.65035
[21] Freistühler, H.; Kotschote, M., Phase-field and Korteweg-type models for the time-dependent flow of compressible two-phase fluids, Arch. Rational Mech. Anal., 224, 1-20, (2017) · Zbl 1366.35130
[22] Garcke, H.; Hinze, M.; Kahle, C., A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow, Appl. Numer. Math., 99, 151-171, (2016) · Zbl 1329.76168
[23] Giesselmann, J.; Pryer, T., Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two-phase flow model, M2AN Math. Model. Numer. Anal., 49, 275-301, (2015) · Zbl 1310.76092
[24] Gomez, H.; Hughes, T. J. R., Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230, 5310-5327, (2011) · Zbl 1419.76439
[25] Gomez, H.; van der Zee, K. G.; Stein, E.; de Borst, R.; Hughes, T. J. R., Encyclopedia of Computational Mechanics, Computational phase-field modeling, (2016), Wiley
[26] Guermond, J.-L.; Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 167-188, (2000) · Zbl 0994.76051
[27] Guo, Z.; Lin, P.; Lowengrub, J. S., A numerical method for the quasi-incompressible Cahn-Hilliard Navier-Stokes equations for variable density flows with a discrete energy law, J. Comput. Phys., 276, 486-507, (2014) · Zbl 1349.76057
[28] Gurtin, M. E., Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178-192, (1996) · Zbl 0885.35121
[29] Gurtin, M. E.; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua, (2010), Cambridge Univ. Press
[30] Gurtin, M. E.; Polignone, D.; Viñals, J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6, 815-832, (1996) · Zbl 0857.76008
[31] Han, D.; Wang, X., A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290, 139-156, (2015) · Zbl 1349.76213
[32] Heida, M.; Málek, J., On compressible Korteweg fluid-like materials, Int. J. Engrg. Sci., 48, 1313-1324, (2010) · Zbl 1231.76248
[33] Hintermüller, M.; Hinze, M.; Tber, M. H., An adaptive finite-element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem, Optim. Methods Softw., 26, 777-811, (2011) · Zbl 1366.74070
[34] Hohenberg, P. C.; Halperin, B. I., Theory of dynamic critical phenomena, Rev. Mod. Phys., 49, 435-479, (1977)
[35] Hu, Z.; Wise, S. M.; Wang, C.; Lowengrub, J. S., Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation, J. Comput. Phys., 228, 5323-5339, (2009) · Zbl 1171.82015
[36] Jacqmin, D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96-127, (1999) · Zbl 0966.76060
[37] Jacqmin, D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57-88, (2000) · Zbl 0984.76084
[38] Kim, J., Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12, 613-661, (2012) · Zbl 1373.76030
[39] Kim, J.; Kang, K.; Lowengrub, J., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193, 511-543, (2004) · Zbl 1109.76348
[40] Kim, J.; Lowengrub, J., Phase-field modeling and simulation of three-phase flows, Interfaces Free Bound., 7, 435-466, (2005) · Zbl 1100.35088
[41] Korteweg, D. J., Sur la forme que prennent LES équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér. II, 6, 1-24, (1901) · JFM 32.0756.02
[42] Liu, J.; Gomez, H.; Evans, J. A.; Hughes, T. J. R.; Landis, C. M., Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations, J. Comput. Phys., 248, 47-86, (2013) · Zbl 1349.76237
[43] Lowengrub, J. S.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. Roy. Soc. London Ser. A Math. Phys. Engrg. Sci., 454, 2617-2654, (1998) · Zbl 0927.76007
[44] Minjeaud, S., An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Numer. Methods Partial Differential Equations, 29, 584-618, (2013) · Zbl 1364.76091
[45] Oden, J. T.; Hawkins, A.; Prudhomme, S., General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20, 477-517, (2010) · Zbl 1186.92024
[46] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free surface and interfacial flow, Ann. Rev. Fluid Mech., 31, 567-603, (1999)
[47] Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 1159-1179, (2010) · Zbl 1410.76464
[48] Shen, J.; Yang, X., Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows, SIAM J. Numer. Anal., 53, 279-296, (2015) · Zbl 1327.65178
[49] Shen, J.; Yang, X.; Wang, Q., Mass and volume conservation in phase-field models for binary fluids, Commun. Comput. Phys., 13, 1045-1065, (2013) · Zbl 1373.76317
[50] Simsek, G.; Wu, X.; van der Zee, K.; van Brummelen, E., Duality-based two-level error estimation for time-dependent PDES: application to linear and nonlinear parabolic equations, Comput. Methods Appl. Mech. Engrg., 288, 83-109, (2015) · Zbl 1425.65120
[51] Temam, R.; Mirainville, A., Mathematical Modeling in Continuum Mechanics, (2001), Cambridge Univ. Press · Zbl 0993.76002
[52] Tierra, G.; Guillén-González, F., Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Methods Engrg., 22, 269-289, (2015) · Zbl 1348.82080
[53] Truesdell, C., Rational Thermodynamics, (1984), Springer · Zbl 0598.73002
[54] van Brummelen, E. H.; Shokrpour-Roudbari, M.; van Zwieten, G. J., Advances in Computational Fluid-Structure Interaction and Flow Simulation, Modeling and Simulation in Science, Engineering and Technology, Elasto-capillarity simulations based on the Navier-Stokes-Cahn-Hilliard equations, 451-462, (2016), Birkhäuser · Zbl 1356.74068
[55] van der Waals, J. D., The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20, 197-244, (1979) · Zbl 1245.82006
[56] van der Zee, K. G.; Oden, J. T.; Prudhomme, S.; Hawkins-Daarud, A., Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition, Numer. Methods Partial Differential Equations, 27, 160-196, (2011) · Zbl 1428.35398
[57] Wise, S. M.; Wang, C.; Lowengrub, J. S., An energy-stable and convergent finite- difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 2269-2288, (2009) · Zbl 1201.35027
[58] X. Wu, K. G. van der Zee, G. Simsek and E. H. van Brummelen, A posteriori error estimation and adaptivity for nonlinear parabolic equations using IMEX-Galerkin discretization of primal and dual equations, submitted. · Zbl 1402.65100
[59] Wu, X.; van Zwieten, G. J.; van der Zee, K. G., Stabilized second-order splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Engrg., 30, 180-203, (2014)
[60] Yue, P.; Feng, J., Wall energy relaxation in the Cahn-Hilliard model for moving contact lines, Phys. Fluids, 23, 012106, (2011) · Zbl 1308.76132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.