×

A novel elastoplastic topology optimization formulation for enhanced failure resistance via local ductile failure constraints and linear buckling analysis. (English) Zbl 1506.74294

Summary: A new formulation is proposed for incorporating local ductile failure constraints and buckling resistance into elastoplastic structural design in the context of extreme loading. Many strides have been made in recent years regarding continuum topology optimization with elastoplasticity and buckling separately, but these phenomena are typically not considered together. The formulation we propose is computationally efficient and robust, partly due to its reliance on small strain kinematics and a separation of the elastoplastic response from the buckling load factors computed during the optimization procedure. An aggregate objective function is constructed in which the total work in an elastoplastic analysis is maximized and an aggregation function of the load factors from a separate linear elastic buckling analysis is included. Additionally, local ductile failure constraints are handled via a framework without aggregation functions and a new pseudo buckling mode filter is proposed. Each of the obtained topologies are then subject to a verification step in which a large strain ductile failure model is used in order to compare the performance of the optimized designs obtained for three numerical examples. The results demonstrate that structural responses such as peak load carrying capacity and total external work required to reach the peak load may be significantly improved using the suggested framework. Other interesting observations are also discussed.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74G60 Bifurcation and buckling
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[2] Swan, C. C.; Kosaka, I., Voigt-Reuss topology optimization for structures with nonlinear material behaviors, Internat. J. Numer. Methods Engrg., 40, 20, 3785-3814 (1997) · Zbl 0908.73053
[3] Maute, K.; Schwarz, S.; Ramm, E., Adaptive topology optimization of elastoplastic structures, Struct. Optim., 15, 2, 81-91 (1998)
[4] Schwarz, S.; Maute, K.; Ramm, E., Topology and shape optimization for elastoplastic structural response, Comput. Methods Appl. Mech. Engrg., 190, 15, 2135-2155 (2001) · Zbl 1067.74052
[5] Bogomolny, M.; Amir, O., Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling, Internat. J. Numer. Methods Engrg., 90, 13, 1578-1597 (2012) · Zbl 1246.74042
[6] Kato, J.; Hoshiba, H.; Takase, S.; Terada, K.; Kyoya, T., Analytical sensitivity in topology optimization for elastoplastic composites, Struct. Multidiscip. Optim., 52, 3, 507-526 (2015)
[7] Li, L.; Zhang, G.; Khandelwal, K., Design of energy dissipating elastoplastic structures under cyclic loads using topology optimization, Struct. Multidiscip. Optim., 56, 2, 391-412 (2017)
[8] Zhang, G.; Li, L.; Khandelwal, K., Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements, Struct. Multidiscip. Optim., 55, 6, 1965-1988 (2017)
[9] Amir, O., Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity, Struct. Multidiscip. Optim., 55, 5, 1797-1818 (2017)
[10] Nakshatrala, P. B.; Tortorelli, D. A., Topology optimization for effective energy propagation in rate-independent elastoplastic material systems, Comput. Methods Appl. Mech. Engrg., 295, 305-326 (2015) · Zbl 1423.74755
[11] Ivarsson, N.; Wallin, M.; Tortorelli, D., Topology optimization of finite strain viscoplastic systems under transient loads, Internat. J. Numer. Methods Engrg., 114, 13, 1351-1367 (2018) · Zbl 07878367
[12] Alberdi, R.; Khandelwal, K., Bi-material topology optimization for energy dissipation with inertia and material rate effects under finite deformations, Finite Elem. Anal. Des., 164, 18-41 (2019)
[13] Wallin, M.; Jönsson, V.; Wingren, E., Topology optimization based on finite strain plasticity, Struct. Multidiscip. Optim., 54, 4, 783-793 (2016)
[14] Fritzen, F.; Xia, L.; Leuschner, M.; Breitkopf, P., Topology optimization of multiscale elastoviscoplastic structures, Internat. J. Numer. Methods Engrg., 106, 6, 430-453 (2016) · Zbl 1352.74239
[15] Alberdi, R.; Khandelwal, K., Design of periodic elastoplastic energy dissipating microstructures, Struct. Multidiscip. Optim., 59, 2, 461-483 (2019)
[16] Fin, J.; Borges, L. A.; Fancello, E. A., Structural topology optimization under limit analysis, Struct. Multidiscip. Optim., 59, 4, 1355-1370 (2019)
[17] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Internat. J. Numer. Methods Engrg., 43, 8, 1453-1478 (1998) · Zbl 0924.73158
[18] Cheng, G.; Jiang, Z., Study on topology optimization with stress constraints, Eng. Optim., 20, 2, 129-148 (1992)
[19] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 4, 605-620 (2010)
[20] Duysinx, P., Topology optimization with different stress limit in tension and compression (1999)
[21] Luo, Y.; Kang, Z., Topology optimization of continuum structures with Drucker-Prager yield stress constraints, Comput. Struct., 90-91, 65-75 (2012)
[22] Bendsøe, M. P.; Díaz, A. R., A method for treating damage related criteria in optimal topology design of continuum structures, Struct. Optim., 16, 2-3, 108-115 (1998)
[23] Jansen, M.; Lombaert, G.; Schevenels, M.; Sigmund, O., Topology optimization of fail-safe structures using a simplified local damage model, Struct. Multidiscip. Optim., 49, 4, 657-666 (2014)
[24] Amir, O.; Sigmund, O., Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization, Struct. Multidiscip. Optim., 47, 2, 157-174 (2013) · Zbl 1274.74307
[25] Amir, O., A topology optimization procedure for reinforced concrete structures, Comput. Struct., 114-115, 46-58 (2013)
[26] James, K. A.; Waisman, H., Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model, Comput. Methods Appl. Mech. Engrg., 268, Suppl. C, 614-631 (2014) · Zbl 1295.74083
[27] James, K. A.; Waisman, H., Topology optimization of structures under variable loading using a damage superposition approach, Internat. J. Numer. Methods Engrg., 101, 5, 375-406 (2015) · Zbl 1352.74243
[28] Challis, V. J.; Roberts, A. P.; Wilkins, A. H., Fracture resistance via topology optimization, Struct. Multidiscip. Optim., 36, 3, 263-271 (2008) · Zbl 1273.74431
[29] Kang, Z.; Liu, P.; Li, M., Topology optimization considering fracture mechanics behaviors at specified locations, Struct. Multidiscip. Optim., 55, 5, 1847-1864 (2017)
[30] Xia, L.; Da, D.; Yvonnet, J., Topology optimization for maximizing the fracture resistance of quasi-brittle composites, Comput. Methods Appl. Mech. Engrg., 332, 234-254 (2018) · Zbl 1439.74304
[31] Da, D.; Yvonnet, J.; Xia, L.; Li, G., Topology optimization of particle-matrix composites for optimal fracture resistance taking into account interfacial damage, Internat. J. Numer. Methods Engrg. (2018) · Zbl 07865069
[32] Russ, J. B.; Waisman, H., Topology optimization for brittle fracture resistance, Comput. Methods Appl. Mech. Engrg., 347, 238-263 (2019) · Zbl 1440.74311
[33] Russ, J. B.; Waisman, H., A novel topology optimization formulation for enhancing fracture resistance with a single quasi-brittle material, Internat. J. Numer. Methods Engrg., 121, 13, 2827-2856 (2020) · Zbl 07841945
[34] Wu, C.; Fang, J.; Zhou, S.; Zhang, Z.; Sun, G.; Steven, G. P.; Li, Q., Level-set topology optimization for maximizing fracture resistance of brittle materials using phase-field fracture model, International Journal for Numerical Methods in Engineering, 121, 13, 2929-2945 (2020),_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6340 · Zbl 07841950
[35] Alberdi, R.; Khandelwal, K., Topology optimization of pressure dependent elastoplastic energy absorbing structures with material damage constraints, Finite Elem. Anal. Des., 133, 42-61 (2017)
[36] Li, L.; Khandelwal, K., Design of fracture resistant energy absorbing structures using elastoplastic topology optimization, Struct. Multidiscip. Optim., 1-29 (2017)
[37] Alberdi, R. A., Computational Methods for Multiscale Analysis and Design of Nonlinear Multifunctional Materials and Structures for Energy Management (2019), University of Notre Dame: University of Notre Dame United States - Indiana, (Ph.D)
[38] Senhora, F. V.; Menezes, I. F.M.; Paulino, G. H., Topology Optimization with Stress Constraints: an Aggregation-Free Approach (2017), Pontificia Universidade Catolica do Rio de Janeiro: Pontificia Universidade Catolica do Rio de Janeiro Rio de Janeiro, (Dissertacao de Mestrado)
[39] Senhora, F.; Giraldo-Londono, O.; Menezes, I.; Paulino, G. H., Topology optimization with local stress constraints: a stress aggregation-free approach, Struct. Multidiscip. Optim. (2020)
[40] Giraldo-Londono, O.; Paulino, G. H., A unified approach for topology optimization with local stress constraints considering various failure criteria: von mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler- Pister and Willam-Warnke, Proc. R. Soc. A, 476, 2238, Article 20190861 pp. (2020), Publisher: Royal Society. URL https://royalsocietypublishing.org/doi/full/10.1098/rspa.2019.0861 · Zbl 1472.74179
[41] Li, L.; Zhang, G.; Khandelwal, K., Topology optimization of energy absorbing structures with maximum damage constraint, Internat. J. Numer. Methods Engrg., 112, 7, 737-775 (2017) · Zbl 07867230
[42] Li, L.; Zhang, G.; Khandelwal, K., Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model, Struct. Multidiscip. Optim., 1-30 (2018)
[43] Michaleris, P.; Tortorelli, D. A.; Vidal, C. A., Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity, Internat. J. Numer. Methods Engrg., 37, 14, 2471-2499 (1994) · Zbl 0808.73057
[44] Ryan, A.; Guodong, Z.; Lei, L.; Kapil, K., A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization, Internat. J. Numer. Methods Engrg. (2018) · Zbl 07864826
[45] Wang, W.; Clausen, P. M.; Bletzinger, K.-U., Efficient adjoint sensitivity analysis of isotropic hardening elastoplasticity via load steps reduction approximation, Comput. Methods Appl. Mech. Engrg., 325, 612-644 (2017) · Zbl 1439.74069
[46] Dilgen, C. B.; Dilgen, S. B.; Fuhrman, D. R.; Sigmund, O.; Lazarov, B. S., Topology optimization of turbulent flows, Comput. Methods Appl. Mech. Engrg., 331, 363-393 (2018) · Zbl 1439.74265
[47] Neves, M. M.; Rodrigues, H.; Guedes, J. M., Generalized topology design of structures with a buckling load criterion, Struct. Optim., 10, 2, 71-78 (1995)
[48] Maute, K., Topologie- und Formoptimierung von dünnwandigen Flächentragwerken (1998), Bericht Nr. 25, Institut für Baustatik, Universität Stuttgart, (Ph.D. thesis)
[49] Rahmatalla, S.; Swan, C. C., Continuum topology optimization of buckling-sensitive structures, AIAA J., 41, 6, 1180-1189 (2003), Publisher: American Institute of Aeronautics and Astronautics_eprint: https://doi.org/10.2514/2.2062
[50] Kemmler, R.; Lipka, A.; Ramm, E., Large deformations and stability in topology optimization, Struct. Multidiscip. Optim., 30, 6, 459-476 (2005) · Zbl 1243.74154
[51] Lindgaard, E.; Dahl, J., On compliance and buckling objective functions in topology optimization of snap-through problems, Struct. Multidiscip. Optim., 47, 3, 409-421 (2013) · Zbl 1274.74363
[52] Pedersen, N. L.; Pedersen, P., Buckling load optimization for 2D continuum models, with alternative formulation for buckling load estimation, Struct. Multidiscip. Optim., 58, 5, 2163-2172 (2018)
[53] Reitinger, R.; Ramm, E., Buckling and imperfection sensitivity in the optimization of shell structures, Thin-Walled Struct., 23, 1, 159-177 (1995)
[54] Neves, M. M.; Sigmund, O.; Bendsøe, M. P., Topology optimization of periodic microstructures with a penalization of highly localized buckling modes, Internat. J. Numer. Methods Engrg., 54, 6, 809-834 (2002),_eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.449 · Zbl 1034.74041
[55] Thomsen, C. R.; Wang, F.; Sigmund, O., Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis, Comput. Methods Appl. Mech. Engrg., 339, 115-136 (2018) · Zbl 1440.74313
[56] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2004), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1059.74001
[57] Gao, X.; Ma, H., Topology Optimization of Continuum Structures Under Buckling Constraints (2015), Pergamon Press, Inc.
[58] Gao, X.; Li, L.; Ma, H., An adaptive continuation method for topology optimization of continuum structures considering buckling constraints, Int. J. Appl. Mech., 09, 07, Article 1750092 pp. (2017), Publisher: Imperial College Press
[59] Ferrari, F.; Sigmund, O., Revisiting topology optimization with buckling constraints, Struct. Multidiscip. Optim., 59, 5, 1401-1415 (2019)
[60] Chin, T. W.; Kennedy, G., Large-scale compliance-minimization and buckling topology optimization of the undeformed common research model wing, (57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum (2016), American Institute of Aeronautics and Astronautics)
[61] Ferrari, F.; Sigmund, O., Towards solving large-scale topology optimization problems with buckling constraints at the cost of linear analyses, Comput. Methods Appl. Mech. Engrg., 363, Article 112911 pp. (2020) · Zbl 1436.74055
[62] Kaliszky, S.; Lógó, J., Discrete optimal design of elasto-plastic trusses using compliance and stability constraints, Struct. Optim., 15, 3, 261-268 (1998)
[63] Schwarz, S.; Ramm, E., Sensitivity analysis and optimization for non-linear structural response, Eng. Comput., 18, 3/4, 610-641 (2001), Publisher: MCB UP Ltd · Zbl 0988.74054
[64] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Anvari, A.; Lee, I. J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[65] Bao, Y., Prediction of Ductile Crack Formation in Uncracked Bodies (2003), Massachusetts Institute of Technology, (Thesis)
[66] Bao, Y.; Wierzbicki, T., A comparative study on various ductile crack formation criteria, J. Eng. Mater. Technol., 126, 3, 314-324 (2004)
[67] Voce, E., A practical strain hardening function, Metallurgica, 51, 219-226 (1955)
[68] de Souza Neto, E.; Peric, D.; Owen, D., Computational Methods for Plasticity: Theory and Applications | Wiley (2011), Wiley, Library Catalog: www.wiley.com
[69] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity, Interdisciplinary Applied Mathematics (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0934.74003
[70] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 2, 199-219 (1988) · Zbl 0611.73057
[71] Wierzbicki, T.; Bao, Y.; Lee, Y.-W.; Bai, Y., Calibration and evaluation of seven fracture models, Int. J. Mech. Sci., 47, 4, 719-743 (2005)
[72] Corona, E.; Reedlun, B., A review of macroscopic ductile failure criteriaTech. Rep. Sandia Report SAND2013-7989 (2013), Sandia National Laboratories
[73] Hooputra, H.; Gese, H.; Dell, H.; Werner, H., A comprehensive failure model for crashworthiness simulation of aluminium extrusions, Int. J. Crashworth., 9, 5, 449-464 (2004), Publisher: Taylor & Francis_eprint: https://doi.org/10.1533/ijcr.2004.0289
[74] Johnson, G. R.; Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., 21, 1, 31-48 (1985)
[75] Kolmogorov, W. L., Spannungen deformationen bruch, Metallurgija, 230 (1970)
[76] Bao, Y.; Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46, 1, 81-98 (2004)
[77] Bai, Y.; Wierzbicki, T., A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., 24, 6, 1071-1096 (2008) · Zbl 1421.74016
[78] Bai, Y.; Wierzbicki, T., Application of extended Mohr-Coulomb criterion to ductile fracture, Int. J. Fract., 161, 1, 1 (2009) · Zbl 1273.74494
[79] de Borst, R.; Crisfield, M.; Remmers, J.; Verhoosel, C., Nonlinear Finite Element Analysis of Solids and Structures (2012), Wiley, Library Catalog: www.wiley.com · Zbl 1300.74002
[80] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems (2005), Association for Computing Machinery · Zbl 1136.65315
[81] Torii, A. J.; Faria, J. R.d., Structural optimization considering smallest magnitude eigenvalues: a smooth approximation, J. Braz. Soc. Mech. Sci. Eng., 39, 5, 1745-1754 (2017), URL https://doi.org/10.1007/s40430-016-0583-x
[82] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[83] Zhou, M.; Rozvany, G. I.N., The COC algorithm, part II: Topological, geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 1, 309-336 (1991)
[84] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 1, 68-75 (1998)
[85] Lazarov, B. S.; Sigmund, O., Filters in topology optimization based on Helmholtz-type differential equations, Internat. J. Numer. Methods Engrg., 86, 6, 765-781 (2011) · Zbl 1235.74258
[86] Bruns, T. E.; Tortorelli, D. A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190, 26, 3443-3459 (2001) · Zbl 1014.74057
[87] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 2, 238-254 (2004) · Zbl 1079.74599
[88] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 6, 767-784 (2011) · Zbl 1274.74409
[89] Nocedal, J.; Wright, S., (Numerical Optimization. Numerical Optimization, Springer Series in Operations Research and Financial Engineering (2006), Springer-Verlag: Springer-Verlag New York) · Zbl 1104.65059
[90] Bruggi, M., On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 2, 125-141 (2008) · Zbl 1273.74397
[91] Rodrigues, H. C.; Guedes, J. M.; Bendsøe, M. P., Necessary conditions for optimal design of structures with a nonsmooth eigenvalue based criterion, Struct. Optim., 9, 1, 52-56 (1995)
[92] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[93] Arndt, D.; Bangerth, W.; Clevenger, T. C.; Davydov, D.; Fehling, M.; Garcia-Sanchez, D.; Harper, G.; Heister, T.; Heltai, L.; Kronbichler, M.; Kynch, R. M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 9.1, J. Numer. Math., 27, 4, 203-213 (2019) · Zbl 1435.65010
[94] Heroux, M.; Bartlett, R.; Hoekstra, V. H.R.; Hu, J.; Kolda, T.; Lehoucq, R.; Long, K.; Pawlowski, R.; Phipps, E.; Salinger, A.; Thornquist, H.; Tuminaro, R.; Willenbring, J.; Williams, A., An Overview of TrilinosTech. Rep. SAND2003-2927 (2003), Sandia National Laboratories
[95] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Karpeyev, D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Users ManualTech. Rep. ANL-95/11 - Revision 3.13 (2020), Argonne National Laboratory
[96] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Softw., 31, 3, 351-362 (2005) · Zbl 1136.65315
[97] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[98] Wachter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 1, 25-57 (2006) · Zbl 1134.90542
[99] Svanberg, K., MMA and GCMMA - Two Methods for Nonlinear OptimizationTech. Rep., 15 (2007), URL https://people.kth.se/ krille/mmagcmma.pdf
[100] Aguilo, M.; Robbins, J.; Clark, B.; Viertel, R., PLATO Topology Optimization Software (2020), Sandia National Laboratories, URL https://github.com/platoengine/platoengine
[101] Zegard, T.; Paulino, G. H., Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53, 1, 175-192 (2016)
[102] ABAQUS/Standard User’s Manual, Version 2019 (2019), Dassault Systèmes Simulia Corp: Dassault Systèmes Simulia Corp United States
[103] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 1, 149-167 (2016) · Zbl 1381.74181
[104] Russ, J. B., Computational Design of Structures for Enhanced Failure Resistance (2020), Columbia University, Columbia University, in-progress
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.