×

Topology optimization of particle-matrix composites for optimal fracture resistance taking into account interfacial damage. (English) Zbl 07865069

Summary: This paper presents a topology optimization framework for optimizing the fracture resistance of two-phase composites considering interfacial damage interacting with crack propagation through a redistribution of the inclusions phase. A phase field method for fracture capable of describing interactions between bulk brittle fracture and interfacial damage is adopted within a diffuse approximation of discontinuities. This formulation avoids the burden of remeshing problem during crack propagation and is well adapted to topology optimization purpose. Efficient design sensitivity analysis is performed by using the adjoint method, and the optimization problem is solved by an extended bidirectional evolutionary structural optimization method. The sensitivity formulation accounts for the whole fracturing process involving crack nucleation, propagation, and interaction, either from the interfaces and then through the solid phases, or the opposite. The spatial distribution of material phases are optimally designed using the extended bidirectional evolutionary structural optimization method to improve the fractural resistance. We demonstrate through several examples that the fracture resistance of the composite can be significantly increased at constant volume fraction of inclusions by the topology optimization process.
{Copyright © 2018 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
74Pxx Optimization problems in solid mechanics
Full Text: DOI

References:

[1] QuanZ, LarimoreZ, WuA, et al. Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile‐butadiene‐styrene preform and composite. Compos Sci Technol. 2016;126:139‐148.
[2] CadmanJE, ZhouS, ChenY, LiQ. On design of multi‐functional microstructural materials. J Mater Sci. 2013;48(1):51‐66.
[3] FritzenF, XiaL, LeuschnerM, BreitkopfP. Topology optimization of multiscale elastoviscoplastic structures. Int J Numer Methods Eng. 2016;106(6):430‐453. · Zbl 1352.74239
[4] GuGX, DimasL, QinZ, BuehlerMJ. Optimization of composite fracture properties: method, validation, and applications. J Appl Mech. 2016;83(7):1‐7.
[5] SanB, WaismanH. Optimization of carbon black polymer composite microstructure for rupture resistance. J Appl Mech. 2016;84(2):1‐13.
[6] XiaL, DaDC, YvonnetJ. Topology optimization for maximizing the fracture resistance of quasi‐brittle composites. Comput Methods Appl Mech Eng. 2018;332:234‐254. · Zbl 1439.74304
[7] LamonJ, CarrereN, MartinE. The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites. Composites A. 2000;31(11):1179‐1190.
[8] TvergaardV. Model studies of fibre breakage and debonding in a metal reinforced by short fibres. J Mech Phys Solids. 1993;41(8):1309‐1326. · Zbl 0800.76341
[9] NguyenTT, YvonnetJ, BornertM, ChateauC. Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi‐brittle materials: direct comparison between in situ testing‐microCT experiments and phase field simulations. J Mech Phys Solids. 2016;99:320‐350.
[10] NarducciF, PinhoST. Exploiting nacre‐inspired crack deflection mechanisms in CFRP via micro‐structural design. Compos Sci Technol. 2017;153:178‐189. https://doi.org/10.1016/j.compscitech.2017.08.023 · doi:10.1016/j.compscitech.2017.08.023
[11] MoesN, DolbowJ, BelytschkoT. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131‐150. · Zbl 0955.74066
[12] SukumarN, MoesN, MoranB. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng. 2000;48(11):1549‐1570. · Zbl 0963.74067
[13] BernardPE, MoesN, ChevaugeonN. Damage growth modeling using the thick level set (TLS) approach: efficient discretization for quasi‐static loadings. Comput Methods Appl Mech Eng. 2012;233‐236:11‐27. · Zbl 1253.74097
[14] CazesF, MoesN. Damage growth modeling using the thick level set (TLS) approach: efficient discretization for quasi‐static loadings. Int J Numer Methods Eng. 2015;103(2):114‐143. · Zbl 1352.74019
[15] FrancfortGA, MarigoJJ. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids. 1998;46(8):1319‐1342. · Zbl 0966.74060
[16] MieheC, HofackerM, WelschingerF. A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng. 2010;199(45‐48):2765‐2778. · Zbl 1231.74022
[17] KuhnC, MüllerR. A continuum phase field model for fracture. Eng Fract Mech. 2010;77(18):3625‐3634.
[18] BourdinB, FrancfortGA, MarigoJJ. The variational approach to fracture. J Elast. 2008;91(1‐3):5‐148. · Zbl 1176.74018
[19] PhamK, MarigoJJ. The variational approach to damage. I: the foundations. Comptes Rendus Mec. 2010;338:191‐198. · Zbl 1300.74046
[20] BourdinB, FrancfortGA, MarigoJJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids. 2000;48(4):797‐826. · Zbl 0995.74057
[21] MumfordD, ShahJ. Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math. 1989;42(5):577‐685. · Zbl 0691.49036
[22] AmbrosioL, TortorelliVM. Approximation of functional depending on jumps by elliptic functional via γ‐convergence. Commun Pure Appl Math. 1990;43(8):999‐1036. · Zbl 0722.49020
[23] MieheC, WelschingerF, HofackerM. Thermodynamically consistent phase‐field models of fracture: variational principles and multi‐field fe implementations. Int J Numer Methods Eng. 2010;83(10):1273‐1311. · Zbl 1202.74014
[24] NguyenTT, YvonnetJ, ZhuQZ, BornertM, ChateauC. A phase‐field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput Methods Appl Mech Eng. 2016;312:567‐595. · Zbl 1439.74243
[25] BendsøeMP, KikuchiN. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71(2):197‐224. · Zbl 0671.73065
[26] BendsøeM, SigmundO. Topology Optimization: Theory, Methods and Applications. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2003.
[27] Nguyen‐XuanH. A polytree‐based adaptive polygonal finite element method for topology optimization. Int J Numer Meth Eng. 2017;110(10):972‐1000. · Zbl 07866616
[28] ChauK, ChauK, NgoT, HacklK, Nguyen‐XuanH. A polytree‐based adaptive polygonal finite element method for multi‐material topology optimization. Comput Methods Appl Mech Eng. 2018;332:712‐739. · Zbl 1440.74382
[29] XieYM, StevenGP. A simple evolutionary procedure for structural optimization. Comput Struct. 1993;49(5):885‐896.
[30] HuangX, XieYM. Convergent and mesh‐independent solutions for the bi‐directional evolutionary structural optimization method. Finite Elem Anal Des. 2007;43(14):1039‐1049.
[31] SethianJA, WiegmannA. Structural boundary design via level set and immersed interface methods. J Comput Phys. 2000;163(2):489‐528. · Zbl 0994.74082
[32] WangMY, WangX, GuoD. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1‐2):227‐246. · Zbl 1083.74573
[33] AllaireG, JouveF, ToaderAM. Structural optimization using sensitivity analysis and a level‐set method. J Comput Phys. 2004;194(1):363‐393. · Zbl 1136.74368
[34] XiaL, FritzenF, BreitkopfP. Evolutionary topology optimization of elastoplastic structures. Struct Multidiscip Optim. 2017;55(2):569‐581.
[35] XiaL, XiaQ, HuangX, XieY. Bi‐directional evolutionary structural optimization on advanced structures and materials: A comprehensive review. Arch Comput Methods Eng. 2018;25(2):437‐478. https://doi.org/10.1007/s11831-016-9203-2 · Zbl 1392.74074 · doi:10.1007/s11831-016-9203-2
[36] XiaL, BreitkopfP. Concurrent topology optimization design of material and structure within FE^2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng. 2014;278:524‐542. · Zbl 1423.74770
[37] XiaL, BreitkopfP. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng. 2015;286:147‐167. · Zbl 1423.74772
[38] VermaakN, MichailidisG, ParryG, EstevezR, AllaireG, BrechetY. Material interface effects on the topology optimization of multi‐phase structures using a level set method. Struct Multidiscip Optim. 2014;50(4):623‐644. https://doi.org/10.1007/s00158-014-1074-2 · doi:10.1007/s00158-014-1074-2
[39] LawryM, MauteK. Level set topology optimization of problems with sliding contact interfaces. Struct Multidiscip Optim. 2015;52(6):1107‐1119.
[40] LiuP, LuoY, KangZ. Multi‐material topology optimization considering interface behaviour via XFEM and level set method. Comput Methods Appl Mech Eng. 2016;308:113‐133. · Zbl 1439.74290
[41] BehrouR, LawryM, MauteK. Level set topology optimization of structural problems with interface cohesion. Int J Numer Methods Eng. 2017;112(8):990‐1016. https://doi.org/10.1002/nme.5540 · Zbl 07867240 · doi:10.1002/nme.5540
[42] DuysinxP, BendsøeMP. Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng. 1998;43(8):1453‐1478. · Zbl 0924.73158
[43] GuoX, ZhangWS, WangMY, WeiP. Stress‐related topology optimization via level set approach. Comput Methods Appl Mech Eng. 2011;200(47‐48):3439‐3452. · Zbl 1230.74152
[44] XiaQ, ShiT, LiuS, WangMY. A level set solution to the stress‐based structural shape and topology optimization. Comput Struct. 2012;90‐91:55‐64.
[45] BruggiM, DuysinxP. Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim. 2012;46(3):369‐384. · Zbl 1274.74219
[46] LuoY, WangMY, KangZ. An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng. 2013;254:31‐41. · Zbl 1297.74098
[47] CaiS, ZhangW, ZhuJ, GaoT. Stress constrained shape and topology optimization with fixed mesh: a b‐spline finite cell method combined with level set function. Comput Methods Appl Mech Eng. 2014;278:361‐387. · Zbl 1423.74741
[48] CaiS, ZhangW. Stress constrained topology optimization with free‐form design domains. Comput Methods Appl Mech Eng. 2015;289:267‐290. · Zbl 1423.74740
[49] SunZ, LiD, ZhangWS, ShiS, GuoX. Topological optimization of biomimetic sandwich structures with hybrid core and CFRP face sheets. Compos Sci Technol. 2017;142:79‐90.
[50] ChallisVJ, RobertsAP, WilkinsA. Fracture resistance via topology optimisation. Struct Multidiscip Optim. 2008;36(3):263‐271. · Zbl 1273.74431
[51] AmirO, SigmundO. Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct Multidiscip Optim. 2012;47(2):157‐174. · Zbl 1274.74307
[52] AmirO. A topology optimization procedure for reinforced concrete structures. Comput Struct. 2013;114‐115:46‐58.
[53] JansenM, LombaertG, SchevenelsM, SigmundO. Topology optimization of fail‐safe structures using a simplified local damage model. Struct Multidiscip Optim. 2013;49(4):657‐666.
[54] JamesKA, WaismanH. Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng. 2014;268:614‐631. · Zbl 1295.74083
[55] KangZ, LiuP, LiM. Topology optimization considering fracture mechanics behaviors at specified locations. Struct Multidiscip Optim. 2016;55(5):1847‐1864.
[56] VerhooselCV, deBorstR. A phase‐field model for cohesive fracture. Int J Numer Methods Eng. 2013;96(1):43‐62. · Zbl 1352.74029
[57] HuangX, XieYM. Bi‐directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech. 2009;43(3):393‐401. · Zbl 1162.74425
[58] DaDC, CuiXY, LongK, LiGY. Concurrent topological design of composite structures and the underlying multi‐phase materials. Comput Struct. 2017;179(1):1‐14.
[59] MauteK, SchwarzS, RammE. Adaptive topology optimization of elastoplastic structures. Structural Optimization. 1998;15(2):81‐91.
[60] SchwarzS, MauteK, RammE. Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng. 2001;190(15‐17):2135‐2155. · Zbl 1067.74052
[61] HuangX, XieYM. Topology optimization of nonlinear structures under displacement loading. Eng Struct. 2008;30(7):2057‐2068.
[62] XiaL, BreitkopfP. Recent advances on topology optimization of multiscale nonlinear structures. Arch Comput Methods Eng. 2017;24(2):227‐249. · Zbl 1364.74086
[63] SigmundO. A 99 line topology optimization code written in MATLAB. Struct Multidiscip Optim. 2001;21(2):120‐127.
[64] HuangX, XieYM. Topology Optimization of Continuum Structures: Methods and Applications. Chichester, UK: John Wiley & Sons; 2010. · Zbl 1279.90001
[65] NguyenTT, YvonnetJ, ZhuQZ, BornertM, ChateauC. A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng Fract Mech. 2015;139:18‐39.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.