×

Level-set topology optimization for ductile and brittle fracture resistance using the phase-field method. (English) Zbl 1539.74317

Summary: This work presents a rigorous mathematical formulation for topology optimization of a macro structure undergoing ductile failure. The prediction of ductile solid materials which exhibit dominant plastic deformation is an intriguingly challenging task and plays an extremely important role in various engineering applications. Here, we rely on the phase-field approach to fracture which is a widely adopted framework for modeling and computing the fracture failure phenomena in solids. The first objective is to optimize the topology of the structure in order to minimize its mass, while accounting for structural damage. To do so, the topological phase transition function (between solid and void phases) is introduced, thus resulting in an extension of all the governing equations. Our second objective is to additionally enhance the fracture resistance of the structure. Accordingly, two different formulations are proposed. One requires only the residual force vector of the deformation field as a constraint, while in the second formulation, the residual force vector of the deformation and phase-field fracture simultaneously have been imposed. An incremental minimization principles for a class of gradient-type dissipative materials are used to derive the governing equations. Thereafter, to obtain optimal topology to enhance the structural resistance due to fracture, the level-set-based formulation is formulated. The level-set-based topology optimization is employed to seek an optimal layout with smooth and clear boundaries. Sensitivities are derived using the analytical gradient-based adjoint method to update the level-set surface for both formulations. Here, the evolution of the level-set surface is realized by the reaction-diffusion equation to maximize the strain energy of the structure while a certain volume of design domain is prescribed. Several three-dimensional numerical examples are presented to substantiate our algorithmic developments.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics

Software:

top.m; Matlab; HYPLAS

References:

[1] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013)
[2] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[3] Zhu, J.-H.; Zhang, W.-H.; Xia, L., Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng., 23, 4, 595-622 (2016) · Zbl 1360.74128
[4] Aage, N.; Andreassen, E.; Lazarov, B. S.; Sigmund, O., Giga-voxel computational morphogenesis for structural design, Nature, 550, 7674, 84-86 (2017)
[5] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[6] Sigmund, O., On the design of compliant mechanisms using topology optimization, J. Struct. Mech., 25, 4, 493-524 (1997)
[7] Noii, N.; Aghayan, I.; Hajirasouliha, I.; Kunt, M. M., A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA, J. Civ. Eng. Manag., 23, 2, 252-262 (2017)
[8] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[9] Bendsøe, M. P., Topology optimization, (Floudas, C. A.; Pardalos, P. M., Encyclopedia of Optimization (2001), Springer US), 2636-2638 · Zbl 1027.90001
[10] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 5, 885-896 (1993)
[11] Osher, S. J.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[12] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[13] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[14] Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A., A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2876-2891 (2010) · Zbl 1231.74365
[15] Allaire, G.; Jouve, F.; Toader, A. M., A level-set method for shape optimization, C. R. Math., 334, 12, 1125-1130 (2002) · Zbl 1115.49306
[16] Burger, M., A framework for the construction of level set methods for shape optimization and reconstruction, Interfaces Free Bound., 5, 3, 301-329 (2003) · Zbl 1081.35134
[17] Osher, S. J.; Santosa, F., Level set methods for optimization problems involving geometry and constraints, J. Comput. Phys., 171, 1, 272-288 (2001) · Zbl 1056.74061
[18] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 2, 489-528 (2000) · Zbl 0994.74082
[19] Jahangiry, H. A.; Tavakkoli, S. M., An isogeometrical approach to structural level set topology optimization, Comput. Methods Appl. Mech. Engrg., 319, 240-257 (2017) · Zbl 1439.74277
[20] Jahangiry, H. A.; Jahangiri, A., Combination of Isogeometric analysis and level-set method in topology optimization of heat-conduction systems, Appl. Therm. Eng., 161, Article 114134 pp. (2019)
[21] Allen, S. M.; Cahn, J. W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[22] Bourdin, B.; Chambolle, A., The phase-field method in optimal design, (IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006), Springer), 207-215
[23] Takezawa, A.; Nishiwaki, S.; Kitamura, M., Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys., 229, 7, 2697-2718 (2010) · Zbl 1185.65109
[24] Choi, J. S.; Yamada, T.; Izui, K.; Nishiwaki, S.; Yoo, J., Topology optimization using a reaction-diffusion equation, Comput. Methods Appl. Mech. Engrg., 200, 29-32, 2407-2420 (2011) · Zbl 1230.74151
[25] Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S., Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Struct. Multidiscip. Optim., 51, 5, 1159-1172 (2015)
[26] Alberdi, R.; Zhang, G.; Li, L.; Khandelwal, K., A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization, Internat. J. Numer. Methods Engrg., 115, 1, 1-56 (2018) · Zbl 07864826
[27] Michaleris, P.; Tortorelli, D. A.; Vidal, C. A., Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity, Internat. J. Numer. Methods Engrg., 37, 14, 2471-2499 (1994) · Zbl 0808.73057
[28] Noii, N.; Khodadadian, A.; Ulloa, J.; Aldakheel, F.; Wick, T.; François, S.; Wriggers, P., Bayesian inversion for unified ductile phase-field fracture, Comput. Mech., 68, 4, 943-980 (2021) · Zbl 1478.74076
[29] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1, 5-148 (2008) · Zbl 1176.74018
[30] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[31] Wu, J.-Y.; Nguyen, V. P.; Nguyen, C. T.; Sutula, D.; Sinaie, S.; Bordas, S. P., Chapter One - Phase-field modeling of fracture, (Bordas, S. P.; Balint, D. S., Advances in Applied Mechanics, vol. 53 (2020), Elsevier), 1-183
[32] Francfort, G. A.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[33] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[34] Kuhn, C.; Schlüter, A.; Müller, R., On degradation functions in phase field fracture models, Comput. Mater. Sci., 108, 374-384 (2015)
[35] Mumford, D. B.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. (1989) · Zbl 0691.49036
[36] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 2, 342-368 (2009) · Zbl 1421.74089
[37] Alessi, R.; Marigo, J.; Vidoli, S., Gradient damage models coupled with plasticity and nucleation of cohesive cracks, Arch. Ration. Mech. Anal., 214, 2, 575-615 (2014) · Zbl 1321.74006
[38] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput. Mech., 55, 5, 1017-1040 (2015) · Zbl 1329.74018
[39] Alessi, R.; Marigo, J.-J.; Maurini, C.; Vidoli, S., Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples, Int. J. Mech. Sci. (2017)
[40] Borden, M.; Hughes, T.; Landis, C.; Anvari, A.; Lee, I., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166 (2016) · Zbl 1439.74343
[41] Kuhn, C.; Noll, T.; Müller, R., On phase field modeling of ductile fracture, GAMM-Mitt., 39, 1, 35-54 (2016) · Zbl 1397.74027
[42] Ulloa, J.; Rodríguez, P.; Samaniego, E., On the modeling of dissipative mechanisms in a ductile softening bar, J. Mech. Mater. Struct., 11, 4, 463-490 (2016)
[43] Alessi, R.; Ambati, M.; Gerasimov, T.; Vidoli, S.; De Lorenzis, L., Comparison of phase-field models of fracture coupled with plasticity, (Advances in Computational Plasticity (2018), Springer), 1-21 · Zbl 1493.74006
[44] Kienle, D.; Aldakheel, F.; Keip, M.-A., A finite-strain phase-field approach to ductile failure of frictional materials, Int. J. Solids Struct., 172, 147-162 (2019)
[45] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.; Wriggers, P.; Hesch, C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput. Methods Appl. Mech. Engrg., 361, Article 112730 pp. (2020) · Zbl 1442.74040
[46] Storm, J.; Pise, M.; Brands, D.; Schröder, J.; Kaliske, M., A comparative study of micro-mechanical models for fiber pullout behavior of reinforced high performance concrete, Eng. Fract. Mech., 243, Article 107506 pp. (2021)
[47] Heider, Y.; Sun, W., A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking, Comput. Methods Appl. Mech. Engrg., 359, Article 112647 pp. (2020) · Zbl 1441.74205
[48] Ulloa, J.; Noii, N.; Alessi, R.; Aldakheel, F.; Degrande, G.; François, S., Variational modeling of hydromechanical fracture in saturated porous media: A micromechanics-based phase-field approach, Comput. Methods Appl. Mech. Engrg., 396, Article 115084 pp. (2022) · Zbl 1507.74422
[49] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput. Methods Appl. Mech. Engrg., 351, 860-890 (2019) · Zbl 1441.74213
[50] Noii, N.; Khodadadian, A.; Aldakheel, F., Probabilistic failure mechanisms via Monte Carlo simulations of complex microstructures, Comput. Methods Appl. Mech. Engrg., 399, Article 115358 pp. (2022) · Zbl 1507.74407
[51] Noii, N.; Khodadadian, A.; Wick, T., Bayesian inversion using global-local forward models applied to fracture propagation in porous media, Int. J. Multiscale Comput. Eng., 20, 3 (2022)
[52] Yin, B.; Kaliske, M., A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain, Comput. Methods Appl. Mech. Engrg., 366, Article 113068 pp. (2020) · Zbl 1442.74024
[53] Fang, J.; Wu, C.; Li, J.; Liu, Q.; Wu, C.; Sun, G.; Qing, L., Phase field fracture in elasto-plastic solids: variational formulation for multi-surface plasticity and effects of plastic yield surfaces and hardening, Int. J. Mech. Sci., 156, 382-396 (2019)
[54] Liu, Z.; Reinoso, J.; Paggi, M., Phase field modeling of brittle fracture in large-deformation solid shells with the efficient quasi-Newton solution and global-local approach, Comput. Methods Appl. Mech. Engrg., 399, Article 115410 pp. (2022) · Zbl 1507.74397
[55] Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P., An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture, Comput. Methods Appl. Mech. Engrg., 361, Article 112744 pp. (2020) · Zbl 1442.74213
[56] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv. Model. Simul. Eng. Sci., 5, 1, 1-30 (2018)
[57] Aldakheel, F.; Noii, N.; Wick, T.; Allix, O.; Wriggers, P., Multilevel global-local techniques for adaptive ductile phase-field fracture, Comput. Methods Appl. Mech. Engrg., 387, Article 114175 pp. (2021) · Zbl 1507.74031
[58] Challis, V. J.; Roberts, A. P.; Wilkins, A. H., Fracture resistance via topology optimization, Struct. Multidiscip. Optim., 36, 3, 263-271 (2008) · Zbl 1273.74431
[59] Kang, Z.; Liu, P.; Li, M., Topology optimization considering fracture mechanics behaviors at specified locations, Struct. Multidiscip. Optim., 55, 5, 1847-1868 (2017)
[60] James, K. A.; Waisman, H., Topology optimization of structures under variable loading using a damage superposition approach, Internat. J. Numer. Methods Engrg., 101, 5, 375-406 (2015) · Zbl 1352.74243
[61] James, K. A.; Waisman, H., Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model, Comput. Methods Appl. Mech. Engrg., 268, 614-631 (2014) · Zbl 1295.74083
[62] Amir, O.; Sigmund, O., Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization, Struct. Multidiscip. Optim., 47, 157-174 (2013) · Zbl 1274.74307
[63] Li, L.; Zhang, G.; Khandelwal, K., Topology optimization of energy absorbing structures with maximum damage constraint, Internat. J. Numer. Methods Engrg., 112, 7, 737-775 (2017) · Zbl 07867230
[64] Noël, L.; Duysinx, P.; Maute, K., Level set topology optimization considering damage, Struct. Multidiscip. Optim., 56, 4, 737-753 (2017)
[65] Li, L.; Khandelwal, K., Design of fracture resistant energy absorbing structures using elastoplastic topology optimization, Struct. Multidiscip. Optim., 56, 1447-1475 (2017)
[66] Wu, Y.; Yvonnet, J.; Li, P.; He, Z.-C., Topology optimization for enhanced dynamic fracture resistance of structures, Comput. Methods Appl. Mech. Engrg., 394, Article 114846 pp. (2022) · Zbl 1507.74338
[67] Xia, L.; Da, D.; Yvonnet, J., Topology optimization for maximizing the fracture resistance of quasi-brittle composites, Comput. Methods Appl. Mech. Engrg., 332, 234-254 (2018) · Zbl 1439.74304
[68] Da, D.; Yvonnet, J.; Xia, L.; Li, G., Topology optimization of particle-matrix composites for optimal fracture resistance taking into account interfacial damage, Internat. J. Numer. Methods Engrg., 115, 5, 604-626 (2018) · Zbl 07865069
[69] Russ, J. B.; Waisman, H., A novel topology optimization formulation for enhancing fracture resistance with a single quasi-brittle material, Internat. J. Numer. Methods Engrg., 121, 13, 2827-2856 (2020) · Zbl 07841945
[70] Russ, J. B.; Waisman, H., A novel elastoplastic topology optimization formulation for enhanced failure resistance via local ductile failure constraints and linear buckling analysis, Comput. Methods Appl. Mech. Engrg., 373, Article 113478 pp. (2021) · Zbl 1506.74294
[71] Russ, J. B.; Waisman, H., Topology optimization for brittle fracture resistance, Comput. Methods Appl. Mech. Engrg., 347, 238-263 (2019) · Zbl 1440.74311
[72] Wu, C.; Fang, J.; Zhou, S.; Zhang, Z.; Sun, G.; Steven, G. P.; Li, Q., Level-set topology optimization for maximizing fracture resistance of brittle materials using phase-field fracture model, Internat. J. Numer. Methods Engrg., 121, 13, 2929-2945 (2020) · Zbl 07841950
[73] Hu, J.; Yao, S.; Gan, N.; Xiong, Y.; Chen, X., Fracture strength topology optimization of structural specific position using a bi-directional evolutionary structural optimization method, Eng. Optim., 52, 4, 583-602 (2020)
[74] Miehe, C.; Hofacker, M.; Schänzel, L.-M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[75] Desai, J.; Allaire, G.; Jouve, F., Topology optimization of structures undergoing brittle fracture, Struct. Multidiscip. Optim., 5 (2021)
[76] Fritzen, F.; Xia, L.; Leuschner, M.; Breitkopf, P., Topology optimization of multiscale elastoviscoplastic structures, Internat. J. Numer. Methods Engrg., 106, 6, 430-453 (2016) · Zbl 1352.74239
[77] Huang, X.; Xie, Y., Topology optimization of nonlinear structures under displacement loading, Eng. Struct., 30, 7, 2057-2068 (2008)
[78] Gangwar, T.; Schillinger, D., Thermodynamically consistent concurrent material and structure optimization of elastoplastic multiphase hierarchical systems (2022), arXiv preprint arXiv:2204.06839
[79] Schwarz, S.; Maute, K.; Ramm, E., Topology and shape optimization for elastoplastic structural response, Comput. Methods Appl. Mech. Engrg., 190, 15-17, 2135-2155 (2001) · Zbl 1067.74052
[80] Yoon, G. H.; Kim, Y. Y., Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization, Internat. J. Numer. Methods Engrg., 69, 10, 2196-2218 (2007) · Zbl 1194.74278
[81] Huang, X.; Xie, Y. M.; Lu, G., Topology optimization of energy-absorbing structures, Int. J. Crashworth., 12, 6, 663-675 (2007)
[82] Xia, L.; Fritzen, F.; Breitkopf, P., Evolutionary topology optimization of elastoplastic structures, Struct. Multidiscip. Optim., 55, 2, 569-581 (2017)
[83] Maury, A.; Allaire, G.; Jouve, F., Elasto-plastic shape optimization using the level set method, SIAM J. Control Optim., 56, 1, 556-581 (2018) · Zbl 1387.35247
[84] Zhao, T.; Ramos, A. S.; Paulino, G. H., Material nonlinear topology optimization considering the von Mises criterion through an asymptotic approach: Max strain energy and max load factor formulations, Internat. J. Numer. Methods Engrg., 118, 13, 804-828 (2019) · Zbl 07865199
[85] Zhao, T.; Lages, E. N.; Ramos, A. S.; Paulino, G. H., Topology optimization considering the Drucker-Prager criterion with a surrogate nonlinear elastic constitutive model, Struct. Multidiscip. Optim., 62, 6, 3205-3227 (2020)
[86] Jahangiry, H. A.; Gholhaki, M.; Naderpour, H.; Tavakkoli, S. M., Isogeometric level set topology optimization for elastoplastic plane stress problems, Int. J. Mech. Mater. Des., 17, 4, 947-967 (2021)
[87] Jahangiry, H. A.; Gholhaki, M.; Naderpour, H.; Tavakkoli, S. M., Isogeometric level set-based topology optimization for geometrically nonlinear plane stress problems, Comput. Aided Des., 151, Article 103358 pp. (2022)
[88] Osher, S.; Fedkiw, R.; Piechor, K., Level set methods and dynamic implicit surfaces, Appl. Mech. Rev., 57, 3, B15 (2004)
[89] Khodadadian, A.; Noii, N.; Parvizi, M.; Abbaszadeh, M.; Wick, T.; Heitzinger, C., A Bayesian estimation method for variational phase-field fracture problems, Comput. Mech., 66, 4, 827-849 (2020) · Zbl 1462.74139
[90] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Internat. J. Numer. Methods Engrg., 111, 9, 816-863 (2017) · Zbl 07867126
[91] Wick, T., Multiphysics Phase-Field Fracture: Modeling, Adaptive Discretizations, and Solvers (2020), De Gruyter: De Gruyter Berlin, Boston · Zbl 1448.74003
[92] Heister, T.; Wheeler, M.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[93] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 149-167 (2016) · Zbl 1381.74181
[94] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput. Methods Appl. Mech. Engrg., 341, 443-466 (2018) · Zbl 1440.74352
[95] Miehe, C.; Schänzel, L.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[96] Noii, N.; Fan, M.; Wick, T.; Jin, Y., A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal-dual active set method, Eng. Fract. Mech., 258, Article 108060 pp. (2021)
[97] de Souza Neto, E. A.; Peric, D.; Owen, D. R., Computational Methods for Plasticity: Theory and Applications (2011), John Wiley & Sons
[98] Miehe, C., A multi-field incremental variational framework for gradient-extended standard dissipative solids, J. Mech. Phys. Solids, 59, 4, 898-923 (2011) · Zbl 1270.74022
[99] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32 (2016)
[100] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[101] Tikhonov, A. N.; Arsenin, V. I., Solutions of ill-posed problems, SIAM Rev., 21, 2, 266-267 (1977) · Zbl 0354.65028
[102] Wriggers, P., Nonlinear Finite Element Methods (2008), Springer Science & Business Media · Zbl 1153.74001
[103] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[104] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[105] Huang, X.; Xie, M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), John Wiley & Sons · Zbl 1279.90001
[106] Diaz, A.; Sigmund, O., Checkerboard patterns in layout optimization, Struct. Optim., 10, 1, 40-45 (1995)
[107] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4, 401-424 (2007)
[108] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 1, 68-75 (1998)
[109] Sigmund, O., Design of multiphysics actuators using topology optimization-Part II: Two-material structures, Comput. Methods Appl. Mech. Engrg., 190, 49-50, 6605-6627 (2001) · Zbl 1116.74407
[110] Matlab, O., Version 9.5.0.944444 (R2018b) (2018), The MathWorks Inc.: The MathWorks Inc. Natick, Massachusetts
[111] Hirshikesh, O.; Jansari, C.; Kannan, K.; Annabattula, R.; Natarajan, S., Adaptive phase field method for quasi-static brittle fracture using a recovery based error indicator and quadtree decomposition, Eng. Fract. Mech., 220, Article 106599 pp. (2019)
[112] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., Validation simulations for the variational approach to fracture, Comput. Methods Appl. Mech. Engrg., 290, 420-437 (2015) · Zbl 1423.74960
[113] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012) · Zbl 1253.74089
[114] Marino, M.; Auricchio, F.; Reali, A.; Rocca, E.; Stefanelli, U., Mixed variational formulations for structural topology optimization based on the phase-field approach, Struct. Multidiscip. Optim., 64, 4, 2627-2652 (2021)
[115] Dedè, L.; Borden, M. J.; Hughes, T. J., Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Eng., 19, 3, 427-465 (2012) · Zbl 1354.74224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.