×

Balance between quantum Markov semigroups. (English) Zbl 1392.81167

Summary: The concept of balance between two state-preserving quantum Markov semigroups on von Neumann algebras is introduced and studied as an extension of conditions appearing in the theory of quantum detailed balance. This is partly motivated by the theory of joinings. Balance is defined in terms of certain correlated states (couplings), with entangled states as a specific case. Basic properties of balance are derived, and the connection to correspondences in the sense of Connes is discussed. Some applications and possible applications, including to non-equilibrium statistical mechanics, are briefly explored.

MSC:

81S25 Quantum stochastic calculus
47D07 Markov semigroups and applications to diffusion processes
46L10 General theory of von Neumann algebras
81P40 Quantum coherence, entanglement, quantum correlations
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics

References:

[1] Accardi, L; Cecchini, C, Conditional expectations in von Neumann algebras and a theorem of takesaki, J. Funct. Anal., 45, 245-273, (1982) · Zbl 0483.46043 · doi:10.1016/0022-1236(82)90022-2
[2] Accardi, L., Fagnola, F., Quezada, R.: Weighted detailed balance and local KMS condition for non-equilibrium stationary states. In: Perspective Nonequilibrium Statistical Physics, vol. 97, pp. 318-356. Bussei Kenkyu (2011)
[3] Accardi, L; Fagnola, F; Quezada, R, On three new principles in non-equilibrium statistical mechanics and Markov semigroups of weak coupling limit type, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 19, 1650009, (2016) · Zbl 1346.82020 · doi:10.1142/S0219025716500090
[4] Accardi, L; Fidaleo, F, Bose-Einstein condensation and condensation of \(q\)-particles in equilibrium and nonequilibrium thermodynamics, Rep. Math. Phys., 77, 153-182, (2016) · Zbl 1378.82012 · doi:10.1016/S0034-4877(16)30018-0
[5] Accardi, L; Imafuku, K, Dynamical detailed balance and local KMS condition for non-equilibrium states, Int. J. Mod. Phys. B, 18, 435-467, (2004) · Zbl 1073.82023 · doi:10.1142/S0217979204024070
[6] Agarwal, GS, Open quantum Markovian systems and the microreversibility, Z. Phys. A Hadrons Nucl., 258, 409-422, (1973) · doi:10.1007/BF01391504
[7] Alicki, R, On the detailed balance condition for non-Hamiltonian systems, Rep. Math. Phys., 10, 249-258, (1976) · Zbl 0363.60114 · doi:10.1016/0034-4877(76)90046-X
[8] Albeverio, S; Høegh-Krohn, R, Frobenius theory for positive maps of von Neumann algebras, Commun. Math. Phys., 64, 83-94, (1978) · Zbl 0398.46054 · doi:10.1007/BF01940763
[9] Arrighi, P; Patricot, C, On quantum operations as quantum states, Ann. Phys., 311, 26-52, (2004) · Zbl 1045.81005 · doi:10.1016/j.aop.2003.11.005
[10] Bannon, JP; Cameron, J; Mukherjee, K, The modular symmetry of Markov maps, J. Math. Anal. Appl., 439, 701-708, (2016) · Zbl 1355.46053 · doi:10.1016/j.jmaa.2016.03.013
[11] Bannon, J.P., Cameron, J., Mukherjee, K.: On noncommutative joinings. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rnx024 · Zbl 1323.46045
[12] Blackadar, B.: Operator algebras: theory of C*-algebras and von Neumann algebras. In: Encyclopaedia of Mathematical Sciences, vol. 122, Springer, Berlin (2006) · Zbl 1092.46003
[13] Bolaños-Servin, JR; Quezada, R, A cycle decomposition and entropy production for circulant quantum Markov semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16, 1350016, (2013) · Zbl 1302.46051 · doi:10.1142/S0219025713500161
[14] Bolaños-Servin, JR; Quezada, R, The \(Θ \)-KMS adjoint and time reversed quantum Markov semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18, 1550016, (2015) · Zbl 1344.46045 · doi:10.1142/S0219025715500162
[15] Carmichael, HJ; Walls, DF, Detailed balance in open quantum Markoffian systems, Z. Phys. B Condens. Matter, 23, 299-306, (1976)
[16] Choi, MD, Completely positive linear maps on complex matrices, Linear Algebra Appl., 10, 285-290, (1975) · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[17] Cipriani, F, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal., 147, 259-300, (1997) · Zbl 0883.47031 · doi:10.1006/jfan.1996.3063
[18] Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego, CA (1994) · Zbl 0818.46076
[19] Pillis, J, Linear transformations which preserve Hermitian and positive semidefinite operators, Pac. J. Math., 23, 129-137, (1967) · Zbl 0166.30003 · doi:10.2140/pjm.1967.23.129
[20] Dereziński, J; Fruboes, R; Attal, S (ed.); etal., Fermi Golden rule and open quantum systems, No. 1882, 67-116, (2006), Berlin · Zbl 1130.81045 · doi:10.1007/3-540-33967-1_2
[21] Dixmier, J.: Von Neumann Algebras. North-Holland, Amsterdam (1981) · Zbl 0473.46040
[22] Duvenhage, R, Joinings of W*-dynamical systems, J. Math. Anal. Appl., 343, 175-181, (2008) · Zbl 1151.37008 · doi:10.1016/j.jmaa.2008.01.056
[23] Duvenhage, R, Ergodicity and mixing of W*-dynamical systems in terms of joinings, Ill. J. Math., 54, 543-566, (2010) · Zbl 1235.46065
[24] Duvenhage, R, Relatively independent joinings and subsystems of W*-dynamical systems, Stud. Math., 209, 21-41, (2012) · Zbl 1262.46045 · doi:10.4064/sm209-1-3
[25] Duvenhage, R; Snyman, M, Detailed balance and entanglement, J. Phys. A, 48, 155303, (2015) · Zbl 1316.82016 · doi:10.1088/1751-8113/48/15/155303
[26] Duvenhage, R; Ströh, A, Recurrence and ergodicity in unital *-algebras, J. Math. Anal. Appl., 287, 430-443, (2003) · Zbl 1046.37007 · doi:10.1016/S0022-247X(02)00571-1
[27] Fagnola, F; Rebolledo, R, Algebraic conditions for convergence of a quantum Markov semigroup to a steady state, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11, 467-474, (2008) · Zbl 1165.46035 · doi:10.1142/S0219025708003142
[28] Fagnola, F., Rebolledo, R.: From classical to quantum entropy production. In: Ouerdiane, H., Barhoumi, A. (eds) Proceedings of the 29th Conference on Quantum Probability and Related Topics, QP-PQ: Quantum Probability and White Noise Analysis, 25, p. 245. World Scientific, Hackensack, NJ (2010) · Zbl 1220.81151
[29] Fagnola, F; Rebolledo, R, Entropy production for quantum Markov semigroups, Commun. Math. Phys., 335, 547-570, (2015) · Zbl 1316.81067 · doi:10.1007/s00220-015-2320-1
[30] Fagnola, F; Umanità, V, Generators of KMS symmetric Markov semigroups on B(h) symmetry and quantum detailed balance, Commun. Math. Phys., 298, 523-547, (2010) · Zbl 1209.46044 · doi:10.1007/s00220-010-1011-1
[31] Falcone, T, \(L^{2}\)-von Neumann modules, their relative tensor products and the spatial derivative, Ill. J. Math., 44, 407-437, (2000) · Zbl 0958.46032
[32] Fellah, D, Return to thermal equilibrium, Lett. Math. Phys., 80, 101-113, (2007) · Zbl 1206.82060 · doi:10.1007/s11005-007-0157-z
[33] Fidaleo, F, An ergodic theorem for quantum diagonal measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12, 307-320, (2009) · Zbl 1248.37010 · doi:10.1142/S0219025709003665
[34] Fidaleo, F; Viaggiu, S, A proposal for the thermodynamics of certain open systems, Physica A, 468, 677-690, (2017) · Zbl 1400.82208 · doi:10.1016/j.physa.2016.10.058
[35] Frigerio, A, Stationary states of quantum dynamical semigroups, Commun. Math. Phys., 63, 269-276, (1978) · Zbl 0404.46050 · doi:10.1007/BF01196936
[36] Furstenberg, H, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, 1, 1-49, (1967) · Zbl 0146.28502 · doi:10.1007/BF01692494
[37] Glasner, E.: Ergodic theory via joinings. In: Mathematical Surveys and Monographs 101. American Mathematical Society, Providence, RI (2003) · Zbl 1038.37002
[38] Goldstein, S; Lindsay, JM, Beurling-deny conditions for KMS-symmetric dynamical semigroups, C. R. Acad. Sci. Paris Sér. I Math., 317, 1053-1057, (1993) · Zbl 0795.46047
[39] Goldstein, S; Lindsay, JM, KMS-symmetric Markov semigroups, Math. Z., 219, 591-608, (1995) · Zbl 0828.47036 · doi:10.1007/BF02572383
[40] Gorini, V; Kossakowski, A; Sudarshan, ECG, Completely positive dynamical semigroups of \(N\)-level systems, J. Math. Phys., 17, 821-825, (1976) · Zbl 1446.47009 · doi:10.1063/1.522979
[41] Grabowski, J; Kuś, M; Marmo, G, On the relation between states and maps in infinite dimensions, Open Syst. Inf. Dyn., 14, 355-370, (2007) · Zbl 1137.81005 · doi:10.1007/s11080-007-9061-3
[42] Jamiołkowski, A, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys., 3, 275-278, (1972) · Zbl 0252.47042 · doi:10.1016/0034-4877(72)90011-0
[43] Jiang, M; Luo, S; Fu, S, Channel-state duality, Phys. Rev. A, 87, 022310, (2013) · doi:10.1103/PhysRevA.87.022310
[44] Kerr, D; Li, H; Pichot, M, Turbulence, representations and trace-preserving actions, Proc. Lond. Math. Soc., 3, 459-484, (2010) · Zbl 1192.46063 · doi:10.1112/plms/pdp036
[45] Kossakowski, A; Frigerio, A; Gorini, V; Verri, M, Quantum detailed balance and KMS condition, Commun. Math. Phys., 57, 97-110, (1977) · Zbl 0374.46060 · doi:10.1007/BF01625769
[46] Kümmerer, B; Schwieger, K, Diagonal couplings of quantum Markov chains, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 19, 1650012, (2016) · Zbl 1370.46042 · doi:10.1142/S0219025716500120
[47] Lindblad, G, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119-130, (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
[48] Majewski, WA, The detailed balance condition in quantum statistical mechanics, J. Math. Phys., 25, 614-616, (1984) · doi:10.1063/1.526164
[49] Majewski, WA, Return to equilibrium and stability of dynamics (semigroup dynamics case), J. Stat. Phys., 55, 417-433, (1989) · Zbl 0716.47038 · doi:10.1007/BF01042609
[50] Majewski, WA; Streater, RF, Detailed balance and quantum dynamical maps, J. Phys. A, 31, 7981-7995, (1998) · Zbl 0929.46060 · doi:10.1088/0305-4470/31/39/013
[51] Majewski, WA, Quantum dynamical maps and return to equilibrium, Acta Phys. Polon. B, 32, 1467-1474, (2001) · Zbl 1066.82515
[52] Niculescu, CP; Ströh, A; Zsidó, L, Noncommutative extensions of classical and multiple recurrence theorems, J. Oper. Theory, 50, 3-52, (2003) · Zbl 1036.46053
[53] Ohya, M., Petz, D.: Quantum entropy and its use. In: Texts and Monographs in Physics. Springer, Berlin (1993) · Zbl 0891.94008
[54] Pandiscia, C, Ergodic dilation of a quantum dynamical system, Confluentes Math., 6, 77-91, (2014) · Zbl 1323.46045 · doi:10.5802/cml.14
[55] Parthasarathy, K.R.: An introduction to quantum stochastic calculus. In: Monographs in Mathematics, vol. 85. Birkhäuser Verlag, Basel (1992) · Zbl 0751.60046
[56] Petz, D, A dual in von Neumann algebras with weights, Q. J. Math. Oxf. Ser., 2, 475-483, (1984) · Zbl 0571.46042 · doi:10.1093/qmath/35.4.475
[57] Popa, S.: Correspondences (preliminary version). Unpublished manuscript. http://www.math.ucla.edu/ popa/popa-correspondences.pdf · Zbl 0398.46054
[58] Rudolph, DJ, An example of a measure preserving map with minimal self-joinings, and applications, J. Anal. Math., 35, 97-122, (1979) · Zbl 0446.28018 · doi:10.1007/BF02791063
[59] Sauvageot, J-L, Sur le produit tensoriel relatif d’espaces de Hilbert, J. Oper. Theory, 9, 237-252, (1983) · Zbl 0517.46050
[60] Sauvageot, J-L; Thouvenot, J-P, Une nouvelle dé finition de l’entropie dynamique des systèmes non commutatifs, Commun. Math. Phys., 145, 411-423, (1992) · Zbl 0772.46036 · doi:10.1007/BF02099145
[61] Spohn, H, Approach to equilibrium for completely positive dynamical semigroups of \(N\)-level systems, Rep. Math. Phys., 10, 189-194, (1976) · doi:10.1016/0034-4877(76)90040-9
[62] Stinespring, WF, Positive functions on C*-algebras, Proc. Am. Math. Soc., 6, 211-216, (1955) · Zbl 0064.36703
[63] Takesaki, M.: Theory of operator algebras II. In: Encyclopaedia of Mathematical Sciences, vol. 125. Operator Algebras and Non-commutative Geometry, vol. 6. Springer, Berlin (2003) · Zbl 1059.46031
[64] Verstraete, F., Verschelde, H.: On quantum channels. arXiv:quant-ph/0202124v2 · Zbl 0483.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.