×

Diagonal couplings of quantum Markov chains. (English) Zbl 1370.46042

The authors study an extension of the coupling method from classical probability theory to quantum probability. Given two normal states \(\varphi,\psi\), inspired by a method introduced by R. Duvenhage [J. Math. Anal. Appl. 343, No. 1, 175–181 (2008; Zbl 1151.37008)] and F. Fidaleo [Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, No. 2, 307–320 (2009; Zbl 1248.37010)], they define a coupling state \(\hat\varphi\) on \({\mathcal M}\otimes{\mathcal M}'\), where \({\mathcal M}'\) is the commutant of \({\mathcal M}\) in a standard representation in the standard Hilbert space, of \(\varphi\) and the opposite state \(\psi'\) on \({\mathcal M}'\). With their definition, they show that considering a suitable projection \(p_\Delta\) in \({\mathcal M}\otimes{\mathcal M}'\), called the diagonal projection, they obtain the inequality \(\| \varphi-\psi\| \leq 4 \left( 1-\hat\varphi(p_\Delta)\right)^{1/2}\). This allows them to estimate convergence rates by analyzing couplings. For a given tensor dilation, they construct a self-coupling Markov operator. It turns out that their coupling is a dual version of the extended dual transition operator studied by R. Gohm et al. [Ergodic Theory Dyn. Syst. 26, No. 5, 1521–1548 (2006; Zbl 1121.81087)]. They also show that this coupling is successful if and only if the dilation is asymptotically complete.

MSC:

46L55 Noncommutative dynamical systems
46L53 Noncommutative probability and statistics
37A55 Dynamical systems and the theory of \(C^*\)-algebras
47A35 Ergodic theory of linear operators
81U99 Quantum scattering theory

References:

[1] 1. W. B. Arveson, Maximal vectors in Hilbert space and quantum entanglement, J. Funct. Anal.256 (2009) 1476-1510. genRefLink(16, ’S0219025716500120BIB001’, ’10.1016
[2] 2. S. Attal and Y. Pautrat, From repeated to continuous quantum interactions, Ann. Henri Poincaré7 (2006) 59-104. genRefLink(16, ’S0219025716500120BIB002’, ’10.1007
[3] 3. B. Blackadar, Operator Algebras, Encyclopaedia Math. Sci., Vol. 112, (Springer, 2006). genRefLink(16, ’S0219025716500120BIB003’, ’10.1007
[4] 4. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1. C and WAlgebras, Symmetry Groups, Decomposition of States (Springer, 1987). · Zbl 0905.46046
[5] 5. J. B. Conway, A Course in Functional Analysis, Graduated Text in Mathematics, Vol. 96, 2nd edn. (Springer, 1990). · Zbl 0706.46003
[6] 6. R. Duvenhage, Joinings of Wdynamical systems, J. Math. Anal. Appl.343 (2008) 175-181. genRefLink(16, ’S0219025716500120BIB006’, ’10.1016 · Zbl 1151.37008
[7] 7. R. Duvenhage, Ergodicity and mixing of Wdynamical systems in terms of joinings, Illinois J. Math.54 (2010) 543-566. genRefLink(128, ’S0219025716500120BIB007’, ’000298441200007’); · Zbl 1235.46065
[8] 8. R. Duvenhage, Relatively independent joinings and subsystems of Wdynamical systems, Studia Math.209 (2012) 21-41. genRefLink(16, ’S0219025716500120BIB008’, ’10.4064
[9] 9. F. Fidaleo, On the split property for inclusions of Walgebras, Proc. Amer. Math. Soc.130 (2001) 121-127. genRefLink(16, ’S0219025716500120BIB009’, ’10.1090 · Zbl 0983.46048
[10] 10. F. Fidaleo, An ergodic theorem for quantum diagonal measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top.12 (2009) 307-320. [Abstract] genRefLink(128, ’S0219025716500120BIB010’, ’000268123100008’); · Zbl 1248.37010
[11] 11. H. Fürstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Syst. Theory1 (1967) 1-49. genRefLink(16, ’S0219025716500120BIB011’, ’10.1007 · Zbl 0146.28502
[12] 12. E. Glasner, Ergodic Theory via Joinings, Math. Surveys Monogr., Vol. 101 (Amer. Math. Soc., 2003). genRefLink(16, ’S0219025716500120BIB012’, ’10.1090 · Zbl 1038.37002
[13] 13. R. Gohm, Noncommutative Stationary Processes (Springer, 2004). genRefLink(16, ’S0219025716500120BIB013’, ’10.1007
[14] 14. R. Gohm, A probabilistic index for completely positive maps and application, J. Operator Theory54 (2005) 339-361. genRefLink(128, ’S0219025716500120BIB014’, ’000234177100009’); · Zbl 1106.46048
[15] 15. R. Gohm, B. Kümmerer and T. Lang, Non-commutative symbolic coding, Ergodic Theory Dynam. Systems26 (2006) 1521-1548. genRefLink(16, ’S0219025716500120BIB015’, ’10.1017
[16] 16. U. Haagerup and M. Musat, Factorization and dilation problems for completely positive maps on von Neumann algebras, Commun. Math. Phys.303 (2011) 555-594. genRefLink(16, ’S0219025716500120BIB016’, ’10.1007 · Zbl 1220.46044
[17] 17. E. Haapasalo, T. Heinosaari and J.-P. Pellonpää, When do pieces determine the whole? extreme marginals of a completely positive map, Rev. Math. Phys.26 (2014) 1450002. [Abstract] genRefLink(128, ’S0219025716500120BIB017’, ’000332129400002’); · Zbl 1287.81014
[18] 18. E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with applications to the beam maser, Proceedings of the IEEE51 (1963) 89-109. genRefLink(16, ’S0219025716500120BIB018’, ’10.1109
[19] 19. B. Kümmerer and H. Maassen, A scattering theory for Markov chains, Infin. Dimens. Anal. Quantum Probab. Relat. Top.3 (2000) 161-176. [Abstract] genRefLink(128, ’S0219025716500120BIB019’, ’000087123700008’); · Zbl 1243.81104
[20] 20. B. Kümmerer, Survey on a theory of noncommutative stationary Markov processes, Quantum Probability and Applications III, eds. L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics, Vol. 1303 (Springer, 1988), pp. 154-182. genRefLink(16, ’S0219025716500120BIB020’, ’10.1007
[21] 21. T. Lindvall, Lectures on the Coupling Method (Dover, 2002). · Zbl 1013.60001
[22] 22. P. Meystre and M. Sargent III, Elements of Quantum Optics, 4th edn. (Springer, 2007). genRefLink(16, ’S0219025716500120BIB022’, ’10.1007 · Zbl 1177.81001
[23] 23. K. R. Parthasarathy, Extremal quantum states in coupled systems, Ann. Inst. Henri Poincaré Prob. Stat.41 (2005) 257-268. genRefLink(16, ’S0219025716500120BIB023’, ’10.1016
[24] 24. G. K. Pedersen, Calgebras and Their Automorphism Groups, London Math. Soc. Monogr. Ser., Vol. 14 (Academic Press, 1979).
[25] 25. J. W. Pitman, Uniform rates of convergence for Markov chain transition probabilities, Z. Wahr. Gebiete29 (1974) 193-227. genRefLink(16, ’S0219025716500120BIB025’, ’10.1007
[26] 26. O. Rudolph, A new class of entanglement measures, J. Math. Phys.42 (2001) 5306-5314. genRefLink(16, ’S0219025716500120BIB026’, ’10.1063 · Zbl 1018.81006
[27] 27. O. Rudolph, On extremal quantum states of composite systems with fixed marginals, J. Math. Phys.45 (2004) 4035-4041. genRefLink(16, ’S0219025716500120BIB027’, ’10.1063 · Zbl 1064.81008
[28] 28. S. Strătilă, Modular Theory in Operator Algebras (Editura Academiei and Abacus Press, 1981).
[29] 29. H. Thorisson, Coupling, Stationarity and Regeneration, Probab. Appl. (N. Y.), Vol. XIV (Springer, 2000). genRefLink(16, ’S0219025716500120BIB029’, ’10.1007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.