×

On quantum operations as quantum states. (English) Zbl 1045.81005

Summary: We formalize Jamiolkowski’s correspondence between quantum states and quantum operations isometrically, and harness its consequences. This correspondence was already implicit in Choi’s proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived directly from those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we find more results stemming from our formulation of the correspondence. Thus, we provide a factorizability condition for quantum operations, and give two novel Schmidt-type decompositions of bipartite pure states. By translating the composition law of quantum operations, we define a group structure upon the set of totally entangled states. The question whether the correspondence is merely mathematical or can be given a physical interpretation is addressed throughout the text: we provide formulae which suggest quantum states inherently define a quantum operation between two of their subsystems, and which turn out to have applications in quantum cryptography.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P68 Quantum computation
47B65 Positive linear operators and order-bounded operators

References:

[1] Jamiolkowski, A., Rep. Mod. Phys., 3, 275-278 (1972) · Zbl 0252.47042
[2] Choi, M. D., Lin. Alg. Appl., 10, 285-290 (1975) · Zbl 0327.15018
[3] Kraus, K., Ann. Phys., 64, 311-315 (1971) · Zbl 1229.81137
[4] Kraus, K., States Effects and Operators: Fundamental Notions of Quantum Theory (1983), Springer Verlag: Springer Verlag Berlin · Zbl 0545.46049
[5] Landau, L. J.; Streater, R. F., Lin. Alg. Appl., 193, 107 (1993) · Zbl 0797.15021
[6] Sudarshan, E. C.G.; Shaji, A., J. Phys. A, 36, 5073-5081 (2003) · Zbl 1119.81335
[7] P.J. Arrighi, Quantum Decoys, arXiv: quant-ph/0308050; P.J. Arrighi, Quantum Decoys, arXiv: quant-ph/0308050
[8] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0576.15001
[9] Horodecki, M.; Horodecki, P.; Horodecki, R., Phys. Lett., 223, 1 (1996) · Zbl 1037.81501
[10] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1049.81015
[11] Peres, A., Phys. Rev. Lett., 77, 1413-1415 (1996) · Zbl 0947.81003
[12] de Pillis, J., Pacific J. Math., 23, 129-137 (1967) · Zbl 0166.30003
[13] Hawking, S. W., Phys. Rev. D. (3), 14, 10, 2460-2473 (1976)
[14] F. Verstraete, H. Verschelde, On quantum Channels., Internal Report 02-176, ESAT-SISTA, K.U. Leuven, 2002; F. Verstraete, H. Verschelde, On quantum Channels., Internal Report 02-176, ESAT-SISTA, K.U. Leuven, 2002
[15] C. Wagschal, Topologie et analyse fonctionnelle Hermann Editeur des Sciences et des Arts, Methodes N 27669, 1995; C. Wagschal, Topologie et analyse fonctionnelle Hermann Editeur des Sciences et des Arts, Methodes N 27669, 1995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.