×

\(\mathbb {Z}_3\)-orbifold construction of the Moonshine vertex operator algebra and some maximal 3-local subgroups of the Monster. (English) Zbl 1430.17085

Summary: In this article, we describe some maximal 3-local subgroups of the Monster simple group using vertex operator algebras (VOA). We first study the holomorphic vertex operator algebra obtained by applying the orbifold construction to the Leech lattice vertex operator algebra and a lift of a fixed-point free isometry of order 3 of the Leech lattice. We also consider some of its special subVOAs and study their stabilizer subgroups using the symmetries of the subVOAs. It turns out that these stabilizer subgroups are 3-local subgroups of its full automorphism group.
As one of our main results, we show that its full automorphism group is isomorphic to the Monster simple group by using a 3-local characterization and that the holomorphic VOA is isomorphic to the Moonshine VOA. This approach allows us to obtain relatively explicit descriptions of two maximal 3-local subgroups of the shape \(3^{1+12}.2.{{\text{Suz}}}{:}2\) and \(3^8.\Omega ^-(8,3).2\) in the Monster simple group.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures

References:

[1] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat’l. Acad. Sci. USA 8(3), 3068-3071 (1986) · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[2] Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back. Mem. Am. Math. Soc. arXiv:1503.01260 · Zbl 1434.17001
[3] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G, Thackray (1985) · Zbl 0568.20001
[4] Chen, H., Lam, C.H.: Quantum dimensions and fusion rules of the VOA \[V^\tau_{{L_{{\varvec{{\cal{C}}}} \times{\varvec{{\cal{D}}}}}}}\] VLC×Dτ. J. Algebra 459, 309-349 (2016) · Zbl 1418.17057 · doi:10.1016/j.jalgebra.2016.03.038
[5] Conway, J.H., Sloane, N.J.A.: The Coxeter-Todd lattice, the Mitchell group, and related sphere packings. Math. Proc. Camb. Philos. Soc. 9(3), 421-440 (1983) · Zbl 0518.10035 · doi:10.1017/S0305004100060746
[6] Dong, C., Griess, R.L., Lam, C.H.: Uniqueness results for the moonshine vertex operator algebra. Am. J. Math. 129, 583-609 (2007) · Zbl 1125.17009 · doi:10.1353/ajm.2007.0009
[7] Dong, C., Lepowsky, J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110, 259-295 (1996) · Zbl 0862.17021 · doi:10.1016/0022-4049(95)00095-X
[8] Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys. 214, 1-56 (2000) · Zbl 1061.17025 · doi:10.1007/s002200000242
[9] Dong, C., Lin, X.J.: Unitary vertex operator algebras. J. Algebra 397, 252-277 (2014) · Zbl 1351.17032 · doi:10.1016/j.jalgebra.2013.09.007
[10] Dong, C., Mason, G.: The Construction of the Moonshine Module as a \[Z_p\] Zp-Orbifold, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemporay Mathematics, vol. 175. American Mathematical Society, Providence (1994) · Zbl 0808.17014
[11] Dong, C., Griess Jr., R.L.: Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Mich. Math. J. 50, 227-239 (2002) · Zbl 1038.17020 · doi:10.1307/mmj/1028575732
[12] Frenkel, I.B., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, viii+64 (1993) · Zbl 0789.17022
[13] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, vol. 134. Academic Press, Boston (1988) · Zbl 0674.17001
[14] Huang, Y.Z., Kirillov Jr., A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143-1159 (2015) · Zbl 1388.17014 · doi:10.1007/s00220-015-2292-1
[15] Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 2nd edn. Advanced Series in Mathematical Physics, 29. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013) · Zbl 1294.17021
[16] Kitazume, M., Lam, C.H., Yamada, H.: 3-State Potts model, Moonshine vertex operator algebra, and \[3A3\] A-elements of the Monster group. Int. Math. Res. Not 23, 1269-1303 (2003) · Zbl 1037.17034
[17] Lam, C.H., Sakuma, S., Yamauchi, H.: Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z 255(3), 597-626 (2007) · Zbl 1139.17010 · doi:10.1007/s00209-006-0034-y
[18] Lam, C.H., Yamauchi, H.: On 3-transposition groups generated by \[\sigma\] σ-involutions associated to \[c=4/5\] c=4/5 Virasoro vectors. J. Algebra 416, 84-121 (2014) · Zbl 1312.17023 · doi:10.1016/j.jalgebra.2014.06.009
[19] Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 8(2), 8295-8299 (1985) · Zbl 0579.17010 · doi:10.1073/pnas.82.24.8295
[20] Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 9(6), 279-297 (1994) · Zbl 0813.17020 · doi:10.1016/0022-4049(94)90104-X
[21] Miyamoto, M.: Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179, 523-548 (1996) · Zbl 0964.17021 · doi:10.1006/jabr.1996.0023
[22] Miyamoto, M.: A \[{\mathbb{Z}}_3\] Z3-Orbifold Theory of Lattice Vertex Operator Algebra and \[{\mathbb{Z}}_3\] Z3-Orbifold Constructions, Symmetries, Integrable Systems and representations, Springer Proceedings in Mathematics & Statistics, vol. 40. Springer, Heidelberg (2013)
[23] Sakuma, S., Yamauchi, H.: Vertex operator algebra with two Miyamoto involutions generating \[S_3\] S3. J. Algebra 267(1), 272-297 (2003) · Zbl 1046.17010 · doi:10.1016/S0021-8693(03)00170-4
[24] Salarian, M.R., Stroth, G.: An identification of the Monster group. J. Algebra 323(4), 1186-1195 (2010) · Zbl 1195.20015 · doi:10.1016/j.jalgebra.2009.09.037
[25] Shimakura, H.: The automorphism group of the vertex operator algebra \[V_L^+\] VL+ for an even lattice \[L\] L without roots. J. Algebra 280, 29-57 (2004) · Zbl 1091.17011 · doi:10.1016/j.jalgebra.2004.05.018
[26] Shimakura, H.: Lifts of automorphisms of vertex operator algebras in simple current extensions. Math. Z. 256(3), 491-508 (2007) · Zbl 1141.17021 · doi:10.1007/s00209-006-0080-5
[27] Shimakura, H.: An \[E_8\] E8-approach to the moonshine vertex operator algebra. J. Lond. Math. Soc. 83, 493-516 (2011) · Zbl 1247.17020 · doi:10.1112/jlms/jdq078
[28] Shimakura, H.: The automorphism group of the \[{{\mathbb{Z}}}_2\] Z2-orbifold of the Barnes-Wall lattice vertex operator algebra of central charge 32. Math. Proc. Camb. Philos. Soc. 156, 343-361 (2014) · Zbl 1306.17017 · doi:10.1017/S0305004113000704
[29] Tanabe, K., Yamada, H.: Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three. J. Math. Soc. Jpn. 6(5), 1169-1242 (2013) · Zbl 1342.17021 · doi:10.2969/jmsj/06541169
[30] Tits, J., Griess’, O.R.: Friendly giant. Invent. Math. 7(8), 491-499 (1984) · Zbl 0548.20011 · doi:10.1007/BF01388446
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.