×

Quantum dimensions and fusion rules of the VOA \(V_{L_{\mathcal{C} \times \mathcal{D}}}^\tau\). (English) Zbl 1418.17057

Summary: In this article, we determine quantum dimensions and fusion rules for the orbifold code VOA \(V_{L_{\mathcal{C} \times \mathcal{D}}}^\tau\). As our main result, we show that all irreducible \(V_{L_{\mathcal{C} \times \mathcal{D}}}^\tau\)-modules are simple current modules if the \(\mathbb{F}_4\)-code \(\mathcal{C}\) is self-dual.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
Full Text: DOI

References:

[1] Abe, T., Rationality of the vertex operator algebra \(V_L^+\) for a positive definite even lattice \(L\), Math. Z., 249, 2, 455-484 (2005) · Zbl 1136.17021
[2] Abe, T.; Dong, C., Classification of irreducible modules for the vertex operator algebra \(V_L^+\): general case, J. Algebra, 273, 2, 657-685 (2004) · Zbl 1051.17015
[3] Abe, T.; Dong, C.; Li, H., Fusion rules for the vertex operator algebras \(M(1)^+\) and \(V_L^+\), Comm. Math. Phys., 253, 1, 171-219 (2005) · Zbl 1207.17032
[4] Abe, T.; Buhl, G.; Dong, C., Rationality, and \(C_2\) co-finiteness, Trans. Amer. Math. Soc., 356, 3391-3402 (2004) · Zbl 1070.17011
[5] Chen, H., Fusion rules among irreducible \(V_{\sqrt{2} A_2}^\tau \)-modules of twisted type, Proc. Amer. Math. Soc., 143, 9, 3717-3726 (2015) · Zbl 1394.17060
[6] Dong, C.; Jiang, C.; Jiang, Q.; Jiao, X.; Yu, N., Fusion rules for the vertex operator algebra \(V_{L_2}^{A_4}\), J. Algebra, 423, 476-505 (2015) · Zbl 1332.17021
[7] Dong, C.; Jiao, X.; Xu, F., Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc., 365, 12, 6441-6469 (2013) · Zbl 1337.17018
[8] Dong, C.; Lepowsky, J., The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra, 110, 259-295 (1996) · Zbl 0862.17021
[9] Dong, C.; Li, H.; Mason, G.; Norton, S., Associative subalgebras of the Griess algebra and related topics, (The Monster and Lie Algebras. The Monster and Lie Algebras, Columbus, OH, 1996. The Monster and Lie Algebras. The Monster and Lie Algebras, Columbus, OH, 1996, Ohio State Univ. Math. Res. Inst. Publ., vol. 7 (1998), de Gruyter: de Gruyter Berlin), 27-42 · Zbl 0946.17011
[10] Dong, C.; Nagatomo, K., Representations of vertex operator algebra \(V_L^+\) for a rank one lattice \(L\), Comm. Math. Phys., 202, 169-195 (1999) · Zbl 0929.17033
[11] Dong, C.; Li, H.; Mason, G., Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys., 214, 1, 1-56 (2000) · Zbl 1061.17025
[12] Dong, C.; Lam, C. H.; Tanabe, K.; Yamada, H.; Yokoyama, K., \(Z_3\) symmetry and \(W_3\) algebra in lattice vertex operator algebras, Pacific J. Math., 215, 2, 245-296 (2004) · Zbl 1055.17013
[13] Dong, C.; Mason, G., The construction of the moonshine module as a \(Z_p\)-orbifold, (Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups. Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, South Hadley, MA, 1992. Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups. Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, South Hadley, MA, 1992, Contemp. Math., vol. 175 (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 37-52 · Zbl 0808.17014
[14] Dong, C., Vertex algebras associated with even lattices, J. Algebra, 161, 1, 245-265 (1993) · Zbl 0807.17022
[15] Dong, C.; Jiang, C.; Lin, X., Rationality of vertex operator algebra \(V_L^+\): higher rank, Proc. Lond. Math. Soc. (3), 104, 4, 799-826 (2012) · Zbl 1292.17022
[16] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster, Pure and Appl. Math., vol. 134 (1988), Academic Press: Academic Press Boston · Zbl 0674.17001
[17] Frenkel, I.; Zhu, Y., Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66, 1, 123-168 (1992) · Zbl 0848.17032
[18] Huffman, W. C.; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1099.94030
[19] Huang, Y.-Z., Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math., 10, 103-154 (2008) · Zbl 1180.17008
[21] Kitazume, M.; Miyamoto, M.; Yamada, H., Ternary codes and vertex operator algebras, J. Algebra, 223, 2, 379-395 (2000) · Zbl 0977.17026
[22] Kitazume, M.; Lam, C. H.; Yamada, H., 3-state Potts model, moonshine vertex operator algebra, and \(3A\)-elements of the Monster group, Int. Math. Res. Not., 23, 1269-1303 (2003) · Zbl 1037.17034
[23] Lepowsky, J., Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA, 82, 8295-8299 (1985) · Zbl 0579.17010
[24] Li, H., Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra, 96, 3, 279-297 (1994) · Zbl 0813.17020
[25] Li, H., Determining fusion rules by \(A(V)\)-modules and bimodules, J. Algebra, 212, 2, 515-556 (1999) · Zbl 0977.17027
[26] Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progr. Math., vol. 227 (2003), Birkhäuser: Birkhäuser Boston
[27] Miyamoto, M., 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 239, 1, 56-76 (2001) · Zbl 1022.17020
[28] Miyamoto, M., A new construction of the moonshine vertex operator algebra over the real number field, Ann. of Math. (2), 159, 2, 535-596 (2004) · Zbl 1133.17017
[29] Miyamoto, M., Flatness of tensor products and semi-rigidity for \(c_2\)-cofinite vertex operator algebras II (2009)
[30] Miyamoto, M., A \(Z_3\)-orbifold theory of lattice vertex operator algebra and \(Z_3\)-orbifold constructions, (Symmetries, Integrable Systems and Representations. Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statistics, vol. 40 (2013), Springer: Springer Heidelberg), 319-344 · Zbl 1287.17049
[31] Rains, E. M.; Sloane, N. J.A., Self-Dual Codes, Handbook of Coding Theory, vols. I, II, 177-294 (1998), North-Holland: North-Holland Amsterdam · Zbl 0936.94017
[33] Tanabe, K., On intertwining operators and finite automorphism groups of vertex operator algebras, J. Algebra, 287, 174-198 (2005) · Zbl 1145.17012
[34] Tanabe, K.; Yamada, H., The fixed point subalgebra of a lattice vertex operator algebra by an automorphism of order three, Pacific J. Math., 230, 2, 469-510 (2007) · Zbl 1207.17036
[35] Tanabe, K.; Yamada, H., Fixed point subalgebras of lattice vertex operator algebras by an automorphism of order three, J. Math. Soc. Japan, 65, 4, 1169-1242 (2013) · Zbl 1342.17021
[36] Yamskulna, G., \(C_2\)-cofiniteness of the vertex operator algebra \(V_L^+\) when \(L\) is a rank one lattice, Comm. Algebra, 32, 3, 927-954 (2004) · Zbl 1093.17008
[37] Zhu, J., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 6, 237-307 (1996) · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.