×

Comparison theorems for hyperbolic type metrics. (English) Zbl 1354.54026

The authors study a generalization of a metric introduced by P. A. Hästö [J. Math. Anal. Appl. 274, No. 1, 38–58 (2002; Zbl 1019.54011)]. The main result is the following theorem:
Theorem 1.1. Let \(D\) be a nonempty set in a metric space \((X, \rho)\) with nonempty boundary \(\partial D\). Then the function \[ h _{D,c}(x,y) = \log \left( 1+ c \frac{\rho(x,y)}{\sqrt{d_D(x) d_D(y)}} \right), \] where \(d_D(x) = \mathrm{dist}(x, \partial D)\) is a metric for every \(c \geq 0\). The constant \(2\) is best possible.
When \(X\) is the upper half-space \(\mathbb{H}^n\) the metric \(h_{\mathbb{H}^n, c}\) is closely related to the hyperbolic metric.
The proof of the main theorem boils down to verification of the triangle inequality for \( h _{D,c}\).
Some applications of the \(h _{D,c}\)-metrics to quasiconformal homeomorphisms are considered in the last section of the paper.

MSC:

54E35 Metric spaces, metrizability
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

Citations:

Zbl 1019.54011

References:

[1] DOI: 10.1007/978-3-662-44342-2 · Zbl 1301.51001 · doi:10.1007/978-3-662-44342-2
[2] DOI: 10.4310/PAMQ.2011.v7.n2.a7 · Zbl 1246.30041 · doi:10.4310/PAMQ.2011.v7.n2.a7
[3] DOI: 10.5186/aasfm.2014.3924 · Zbl 1300.30046 · doi:10.5186/aasfm.2014.3924
[4] DOI: 10.5186/aasfm.2015.4039 · Zbl 1374.30069 · doi:10.5186/aasfm.2015.4039
[5] DOI: 10.1090/conm/432/08300 · doi:10.1090/conm/432/08300
[6] DOI: 10.1007/s40315-014-0075-x · Zbl 1307.30082 · doi:10.1007/s40315-014-0075-x
[7] DOI: 10.1007/s40315-015-0137-8 · Zbl 1355.30019 · doi:10.1007/s40315-015-0137-8
[8] DOI: 10.1016/S0022-247X(02)00219-6 · Zbl 1019.54011 · doi:10.1016/S0022-247X(02)00219-6
[9] Vuorinen M, Lecture notes in mathematics 1319, in: Conformal geometry and quasiregular mappings (1988) · Zbl 0646.30025 · doi:10.1007/BFb0077904
[10] DOI: 10.1007/978-1-4612-1146-4 · doi:10.1007/978-1-4612-1146-4
[11] Ahlfors LV. Möbius transformations in several dimensions. Ordway professorship lectures in mathematics. Minneapolis (MN): University of Minnesota, School of Mathematics; 1981. ii+150 p.
[12] DOI: 10.1007/BF02786713 · Zbl 0349.30019 · doi:10.1007/BF02786713
[13] DOI: 10.1007/BF02792546 · Zbl 0601.30025 · doi:10.1007/BF02792546
[14] Vuorinen M, J. Analysis 18, in: Proceedings of ICM2010 Satellite Conference International Workshop on Harmonic and Quasiconformal Mappings (HMQ2010) pp 399– (2010)
[15] DOI: 10.1090/surv/184 · doi:10.1090/surv/184
[16] Väisälä J, Lecture notes in mathematics 229, in: Lectures on n-dimensional quasiconformal mappings (1971) · Zbl 0221.30031 · doi:10.1007/BFb0061216
[17] Anderson GD, Canadian Mathematical Society Series of Monographs and Advanced Texts, in: Conformal invariants, inequalities and quasiconformal maps (1997)
[18] DOI: 10.1007/BF02798768 · Zbl 0449.30012 · doi:10.1007/BF02798768
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.